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Context-Aware Wireless-Based Cross-Domain
Gesture Recognition

Hua Kang , Qian Zhang , Fellow, IEEE, and Qianyi Huang

Abstract—Recently, significant efforts have been made to
enable WiFi-based gesture recognition. However, models trained
with data collected from specific domain suffer from signifi-
cant performance degradation when applied in a new domain.
In practice, various WiFi sensing techniques have provided us
with a full knowledge of domain information including discrete
variables, i.e., environment and subject, as well as continuous
variables, i.e., location and orientation. Previous works haven’t
fully explored these domain information or need to integrate sub-
stantial links’ information to use them. Intuitively, we can boost
gesture recognition accuracy by accounting for all these domain
information with different properties. We propose a new frame-
work not being restricted to link number which combines an
adversarial learning scheme with feature disentanglement mod-
ules. They together conduct two-stage alignment between each
of the source domains and the target domain to eliminate all
gesture irrespective information. We also present an attention
scheme based on discriminative information of each source and
target domain to promote positive transfer from source to target
domain. Our model is evaluated on the Widar 3.0 data set and
achieves an improvement of 3%–12.7% in cross-domain average
accuracy, demonstrating the superiority.

Index Terms—Adversarial learning, context aware, cross-
domain, gesture recognition.

I. INTRODUCTION

HUMAN gesture recognition is a core part of human
computer interaction, enabling multiple applications

including smart home, health care and virtual reality.
Previous attempts for gesture recognition utilize sensing
modalities varying from visual [1]–[3], wearable [4], [5] to
acoustics [6], [7]. However, they suffer from inherent draw-
backs including privacy leakage, inconvenience as well as
discomfort and limited sensing range. WiFi has emerged as
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a powerful sensing technique for gesture recognition due
to its characteristics of privacy-protection, device-free and
ubiquity. By deploying several wireless device pairs and ana-
lyzing the signal transmitted between them, we can infer
people’s gestures between the transmitter and receiver since
different gestures lead to different time-varying transmission
patterns of wireless signals. However, the signal arriving at
the receiver not only contains information of the performed
gesture but also carries substantial information of environ-
ment, subject, location and orientation of the subject. In
specific, the signal propagates and interacts with the envi-
ronment, undergoing penetration, reflection and diffraction,
which are closely related to the surroundings. The subjects
may have different motion amplitudes and speeds, and their
body shapes also have an impact on the received signal.
Different locations and orientations of the subject influence
the amplitudes, changing patterns of the wireless metrics
and have different blockage impacts on the signal. We use
the term “domain” to summarize these factors uncorrelated
with the gesture. Thus, the model trained with measurements
in one domain often suffers from significant performance
degradation when applied in a new domain. Consequently,
labor-intensive data collection and labeling efforts are required
for each deployment domain. However, there are infi-
nite domains and it is impossible to cover all of them.
This drastically restricts the generalization of WiFi sensing
techniques.

Recent works have explored cross-domain WiFi-based ges-
ture recognition models. For example, WiAG [8] proposes a
translation model which can generate virtual samples in dif-
ferent configurations (i.e., location and orientation) using real
samples in one configuration. In this way, they can achieve
position and orientation agnostic gesture recognition. But they
did not consider cases that across environments and subjects.
EI [9] borrows the idea of adversarial domain adaptation and
plays a minimax game between domain discriminator and fea-
ture extractor to align the distributions of source domain and
target domain. However, they only consider discrete domain
variables, i.e., environment and subject, and assign labels to
them for the discriminator to distinguish. For continuous fac-
tors, i.e., location and orientation, it is impossible to assign
a label for each domain. Widar 3.0 [10] generates a domain-
invariant feature, body-coordinate velocity profile (BVP) to
train a one-fits-all model. But they need as many as six links
to calculate the BVP which is impractical in home scenarios,
and the accuracy drops to lower than 70% when there are only
two links.
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Here, we consider a common and practical scenario in
indoor environments where only two receivers are deployed for
gesture recognition. The reason why we deploy two receivers
is twofold. On the one hand, two links is a practical setting
in places, e.g., home or office, which may not have many
receivers. On the other hand, two links provide two views of
the gesture which can compensate for the impact of occlusion
to some extent. As at least three links are required to gener-
ate reliable BVP without ambiguity, with only two links, we
can only use relatively primitive data, e.g., Doppler frequency
shift (DFS) profile, as input. We collect gesture data from
domains differing in settings of environment, subject, location
and orientation. None of the existing methods except Widar
3.0 (uses BVP) [10] have taken all the four factors into consid-
eration. They are only designed for transferring from labeled
data to unlabeled data with differences in certain factors, e.g.,
environment and subject. As these four factors have differ-
ent properties where environment and subject are discrete and
countable while location and orientation are continuous and
uncountable, they cannot be directly integrated into existing
frameworks.

In this article, we apply wireless-based gesture recognition
under the above mentioned situation with two links available
in indoor environments. To relieve data labeling burden, we
consider multisource unsupervised domain adaptation where
there are multiple source domains with labeled data and a tar-
get domain with unlabeled data. Note that the target domain
can be composed of multiple data distributions, i.e., domains,
but we do not exactly know how the data are allocated to
the data distributions. Through a comprehensive consideration
of influential factors including discrete variables, i.e., envi-
ronment and subject, and continuous variables, i.e., location
and orientation, we present a deep learning model using an
adversarial learning scheme together with feature disentangle-
ment modules that can remove influences of these gesture
irrelevant factors. Meanwhile, we use an attention scheme
whose attention is based on source domains’ discrimina-
tors’ outputs to reflect different similarities between multiple
source domains and the target domain to mitigate negative
transfer.

Our main contribution is as follows.
1) We propose a novel deep learning framework using an

adversarial network and a feature disentanglement part
for multisource unsupervised domain adaptation consid-
ering both discrete domain factors such as environment
and gesture performer and continuous domain factors
such as location and orientation to fully discover the
inner structure of data.

2) We consider differences between multiple source
domains and the target domain and introduce an atten-
tion scheme to promote positive transfer between source
and target domain.

3) We conduct comprehensive experiments on the Widar
3.0 data set [10] under a practical configuration where
only two links’ data are used. Our model achieves an
average accuracy of 87.8%, 91.8%, 92.5%, 87.1%, and
85.7% across environments, subjects, locations, orienta-
tions and four influential factors, respectively, showing

the superiority of the method with respect to classifica-
tion accuracy.

II. RELATED WORK

A. Transfer Learning

Traditional machine learning algorithms have an assump-
tion that the train and test data share the same distribution.
However, this may not hold in real applications. Transfer learn-
ing has emerged to address the problem by transferring the
knowledge from some previous tasks to a target task with
fewer data or without labels. Our work is related to domain
adversarial training approaches [11], [12] and multisource
unsupervised domain adaptation [13]–[15].

Domain Adversarial Training: With the development of
GAN [16], adversarial training network becomes an important
tool to improve performance. The generator is used to extract
domain invariant features and is called feature extractor. The
discriminator takes in the extracted features from source and
target domain and tries to distinguish which domain they
are from. The predictor is to predict the ground-truth labels.
The total loss is the weighted sum of classification loss and
domain discrimination loss. [17], [18] are the pioneer works
on this area. Zhao et al. [19] proposed a conditional adver-
sarial architecture which conditions on both extracted latent
representation and discriminative information conveyed in the
classifier predictions. Although the above architectures are
effective, they treat each domain as a discrete label and cannot
deal with situations where there are different types of domain
information including both discrete variables and continuous
variables.

Multisource Unsupervised Domain Adaptation: Most unsu-
pervised domain adaptation methods consider single source
versus single target. If multiple sources are available, domain
shifts between source domains should be taken into consider-
ation [14], [15], [20]. [21], [22] provide theoretical supports
for multisource unsupervised domain adaptation problem.
DCTN [13] based on distribution weighted combining rule
proposed by [22], designs multiway adversarial learning to
minimize discrepancy between each source domain and the
target domain and multisource classifiers’ predictions are inte-
grated with perplexity scores to classify target samples. Our
work is based on the architecture of DCTN while account-
ing for both discrete domain variables and continuous domain
variables and designing an attention scheme in the training
phase to promote positive transfer.

B. Cross-Domain Gesture Recognition

There are many prior works focusing on cross-domain
gesture recognition to reduce data collection and labeling
efforts and generalize the recognition model. There are two
kinds of methods, making improvements from the model side
especially seeking help from transfer learning and from the
data side including generating virtual samples and extracting
domain invariant features.

For those methods with the help of transfer learning,
CrossSense [23] proposes an offline trained ANN-based roam-
ing model mapping features from one environment to another.
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But it does not fit to multiple source domains situations. EI [9]
uses an adversarial training scheme together with several con-
straints to generalize the model to new environments and new
subjects but it does not consider location and orientation’s
influence. ASTTL [24] considers cross data set wearable activ-
ity recognition problem by two steps: 1) source selection and
2) activity transfer. However, selecting only one source domain
and adopting geodesic flow kernel (GFK) rather than deep
learning models may limit the performance.

For those methods with the help of data, WiAG [8] only
requires users to provide all the gestures at one configura-
tion (i.e., location and orientation) and derives a translation
function from one configuration to another to generate sig-
nal features for the target domain for model training. Widar
3.0 [10] extracts a domain invariant feature, BVP as input
and builds a one-fits-all model with a combination of con-
volutional neural networks (CNNs) and gated recurrent units
(GRUs). But at least three receivers are required to build BVP
with low possibility of ambiguity.

Our article designs a new framework making use of all the
domain information to boost classification accuracy of multi-
source unsupervised domain adaptation under the case where
there are only two receivers deployed in the environment.

III. PROBLEM SETUP

The input data contain both labeled data and unlabeled data.
We refer to the data with and without gesture labels as source
and target domain, respectively. All the data are attached with
domain labels including four dimensions, i.e., environment,
subject, location and orientation, indicating under what con-
figurations the data are collected. Note that these domain
information may be called attributes or features in other lit-
eratures and the domains are distinguished by these domain
information. Thus, we may also call them domain for simplic-
ity in the following text. For example, we may say that the
source domain is subject 1 and target domain is subject 2. In
this article, we consider a general and practical situation where
the configurations for collecting labeled data are different from
that for collecting unlabeled data and the settings for collecting
labeled data are also different from each other. As environment
and subject are discrete variables which can be represented as
domain labels, we use these 2-D domain information to divide
source labeled data into multiple domains, each with a dis-
crete label. Suppose there are N such environment-subject pair
divided source domains and these source domains correspond
to N different underlying distributions {psi(x, y)}N

i=1. Source
domains’ data are sampled from N distributions, respectively,
and have gesture labels, denoted as (Xsi , Ysi) = {xj

si , yj
si}nsi

j=1,
where i ∈ {1, . . . , N}. All the source domain data have
the ground-truth location and orientation when performing
the gesture, and they are continuous variables, denoted as
(Lsi , Osi) = {ljsi , oj

si}nsi
j=1, where i ∈ {1, . . . , N}. The orienta-

tion and location information of the person can be calculated
by motion tracking approaches [8], [25], [26].

For the target domain, data can also be sampled from
multiple underlying distributions, in other words, from
multiple domains. But we do not explicitly divide them into

multiple discrete domains according to environment-subject
pairs like what we do for source domain. We simply regard
the target domain as a whole set without label observation,
denoted as Xt = {xj

t}nt
j=1. The differences among target domain

data instances will be explored by our scheme. And the target
domain data also have the ground-truth location and orien-
tation of the gesture, denoted as (Lt, Ot) = {ljt, oj

t}nt
j=1. All

the source domains and target domain have the same gesture
categories.

IV. METHODOLOGY

In this section, we present our two-stage adversarial domain
adaptation framework for wireless gesture recognition. First,
we provide an overview of the methodology. Next, we intro-
duce model input formats. Then, we illustrate each module
of the framework in turn. Finally, we give the objective and
training method.

A. Overview

An overview of the model is shown in Fig. 1. To train a
model which also works well in a new target domain, we
first collect some unlabeled data from the target configuration
and use these unlabeled target data together with the source
data to train a model. Then for more data collected from the
target domain, the model should still be effective. As the col-
lected gesture data are time series data and there exist multiple
links, the data after preprocessing may still be very complex.
We adopt deep learning framework to derive discriminative
features from these complex data. In the training phase, our
input data are multiple source domains with label observa-
tions divided by environment-subject pairs and a target domain
without label observations as shown in the left hand side of
Fig. 1(a). In the test phase, we feed all the target data into the
well-trained model. The target data only pass through some
of the model components and the paths are shown by arrows
in Fig. 1(b).

The input data are first transformed into low-dimensional
representations Z by a common feature extractor which is
composed of CNNs followed by GRUs. To mitigate domain
discrepancies between target and each source, each source
adopts a source-specific domain discriminator and a source-
specific gesture recognizer. Each source-specific domain dis-
criminator takes in representations Z from the corresponding
source and the target, and labels them by d which represent the
probability of Z coming from source domain. Thus, the goal
of each domain discriminator is to maximize the domain label
prediction accuracy which contradicts the goal of common
feature extractor. By this adversarial scheme, feature extractor
tries its best to extract domain label invariant features to cheat
domain discriminators in which way target and each source
can be aligned.

Each source-specific gesture recognizer first disentangles Z
into class-related features P and domain-related features Q.
The former are further fed into source-specific gesture clas-
sifiers and calculate classification loss while the latter further
pass through domain factor regressors and calculate regres-
sion loss. The above two losses together with maximum mean
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Fig. 1. Model overview. (a) Train. (b) Test.

discrepancy (MMD) loss between source class-related fea-
tures and target class-related features as well as reconstruction
loss between reconstructed Ẑ and original Z constitute gesture
recognizer’s loss.

To promote positive transfer between each source domain
and the target domain, we introduce an attention scheme.
Attentions are calculated by the outputs of source-specific
domain discriminators, indicating that we enhance training of
source domains which share more similarities with the target.
The final classification results are the weighted sum of all the
source-specific gesture recognizers’ outputs where the weights
are also calculated by domain discriminators’ outputs.

In Fig. 1(b), for the test phase, target data only pass through
partial modules of the whole framework. The target data are
first fed into the well-trained common feature extractor and the
extracted latent representations pass through N source-specific
domain discriminators to calculate the attention values. Then,
the attention-weighted representations pass through the source-
specific class-related disentanglers and classifiers of N gesture
recognizers to get N classification results. Finally, these results
are combined according to attention values to get the final
classification results.

B. Model Inputs

The proposed model can be utilized for various types of
wireless data, such as DFS, channel state information (CSI) or
BVP [10]. We only need to change the structure of our feature
extractor to adapt to different data inputs. In this article, under
the situation where only two links are deployed in the environ-
ment, we choose DFS as the input. Compared to BVP, DFS is
more promising with only two links’ data because BVP usually
needs at least three links to overcome ambiguity as illustrated
in [10]. In the step of transforming DFS to BVP in [10], each
time instance is considered independently which incurs ambi-
guity since information along time axis is neglected. However,
by directly feeding DFS into deep neural networks, it is possi-
ble to recover the gesture and eliminate ambiguity leveraging
temporal information. Compared to CSI, DFS better reflects
changes in velocity incurred by hand movements during per-
forming the gestures. As it takes a certain amount of time T
to perform a gesture, the collected data is a time sequence.
We denote each time snapshot in spectrograms as a DFS pro-
file. It is a matrix with dimension F × M, where F is the
number of sampling points in the frequency domain, and M
is the transceiver link number. So the input DFS series are
with dimension T × F × M. Based on such gesture sequences,
we can derive gesture categories through careful design of
network architecture to explore spatial temporal information
of input data.

Fig. 2. Architecture of feature extractor G.

C. Feature Extractor

To reduce the parameter size and prevent overfitting, we use
one common extractor G to extract representations from all the
source domains and the target domain. We use an architec-
ture similar to that in [10] which first extracts spatial features
from each single DFS profile with CNNs and then models
the temporal dependencies of the whole sequence with GRUs.
We choose GRUs because they are capable of learning long-
term representations and they achieve comparable performance
while involving fewer parameters compared to long short-
term memory (LSTM). The architecture of feature extractor
is shown in Fig. 2. Let X represent the input from any source
domain or target domain, i.e., X = {{Xsi}N

i=1, Xt}. For the tth
DFS profile with dimension F×M, where F = 121 and M = 2,
we adopt a (3 × 1) kernel, 1 stride and 1 padding in which
way two links’ data can be extracted independently in the first
layer. After applying a max pooling layer to down-sample the
two links’ features and a dropout layer to reduce overfitting,
the 2−D features are flattened into a vector. Then the vector is
fed into two 64-units dense layers with Relu activation to get
a higher level representation Vt. To extract temporal relation-
ships within DFS series, the outputs V = {Vt, t = 1, 2, . . . , T}
are fed into single-layer GRUs and a 128-D feature vector
is generated. We use Z = {{Zsi}N

i=1, Zt} to represent these
extracted feature representations of all the source domains and
the target domain. Let �G be the set of CNNs and GRUs
parameters. Given the input DFS series X, we can express
functional relationships between Z and X as follows:

Z = G(X;�G). (1)

The extracted features Z are expected to be domain invariant
which can be realized by adversarial learning.

D. Domain Discriminator

We build N domain discriminators like [13] to distin-
guish each source domain and the target domain, denoted as
D = {Dsi}N

i=1, where the ith source domain has domain dis-
criminator Dsi . Each source-specific domain discriminator has
the same architecture, i.e., two fully connected layers where
the first layer has leaky Relu activation while the second layer
has sigmoid activation to get the output. The target latent
representations Zt flow to all the source-specific domain dis-
criminators and the ith source representations Zsi only trigger
the ith source-specific domain discriminator Dsi .

Let �
si
D be the set of source ith domain discriminator’s

parameters. Given the latent representations Z, we can express
the functional relationship between domain discriminator’s
outputs d = {dsi , dti}N

i=1 and Z = {{Zsi}N
i=1, Zt} as follows:

dti = Dsi

(
Zt;�

si
D

)
, dsi = Dsi

(
Zsi;�

si
D

)
(2)
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Fig. 3. Components of gesture recognizer i.

where i ∈ {1, 2, . . . , N}, dsi are the ith source-specific domain
discriminator’s outputs for source domain i’s data and dti are
the ith source-specific domain discriminator’s outputs for tar-
get data. The target data outputs of domain discriminators are
denoted as dt = {{dj

ti}nt
j=1}N

i=1, where each dj
ti ∈ [0, 1]. The out-

puts of domain discriminators reflect the similarities between
the target domain and the source domain. If the output is close
to 0.5, it means that the domain discriminator is uncertain
about whether the sample is from source or target. So the tar-
get shares more similarities with the source domain. On the
contrary, if the output is close to 0 or 1, there may be large
discrepancy between source and the target. These outputs are
used in Section IV-F for weighting the features.

The goal of each Dsi is to identify whether the input origi-
nates from the ith source or the target. The loss of Dsi denoted
as Li

d is defined as follows:

Li
d = − 1

nsi

nsi∑

j=1

log
(
dj

si

) − 1

nt

nt∑

j=1

log
(

1 − dj
ti

)
. (3)

The total discriminator loss Ld is the mean of all the domain
discriminators’ losses

Ld = 1

N

N∑

i=1

Li
d. (4)

E. Gesture Recognizer

The gesture recognizer C is composed of N source-specific
gesture recognizers {Csi}N

i=1. Each source-specific gesture rec-
ognizer independently predicts the gesture labels for the target
domain and it contains the following components: class-related
feature extractor, domain-related feature extractor, gesture
classifier, domain factor regressor and feature reconstructor.
The detailed architecture of gesture recognizer is shown in
Fig. 3 which is an enlargement of the diagram of gesture rec-
ognizer i in Fig. 1. We then introduce each component one by
one.

1) Feature Disentanglement: We want the representations
fed into gesture classifiers to be domain-invariant. Suppose we
have the perfect domain discriminators such that the extracted
features Z should be invariant to the domain labels, i.e., pairs
of environment and subject. However, there are other domain
related features affecting the extracted features and further
affecting the classification results, i.e., location and orientation,

which are explicitly known through existing sophisticated
passive tracking systems, e.g., LiFS [27] , IndoTrack [26] and
Widar2.0 [25]. We want to further disentangle the extracted
features into class-related features and domain-related fea-
tures where class-related features are responsible for gesture
classification and domain-related features are responsible for
domain information regression. For each source domain i,
we design CRsi to extract class-related features and DRsi to
extract domain-related features. Only source i’s features and
target features pass through CRsi and DRsi . Both CRsi and
DRsi are of the same architecture consisting of a dropout
layer followed by a fully connected layer with batch normal-
ization and Relu activation. The outputs are 64 dimensional
vectors. Let P = {Psi , Pti}N

i=1 represent class-related features
and Q = {Qsi , Qti}N

i=1 represent domain-related features. The
functional relationships between P, Q and common extractor
extracted features Z are as follows:

Psi = CRsi

(
Zsi;�

si
CR

)
, Qsi = DRsi

(
Zsi;�

si
DR

)
(5)

Pti = CRsi

(
Zt;�

si
CR

)
, Qti = DRsi

(
Zt;�

si
DR

)
(6)

where i ∈ {1, 2, . . . , N}, �
si
CR are the parameters of source i’s

class-related feature disentangler, �
si
DR are the parameters of

source i’s domain-related feature disentangler, Psi is the class-
related feature of source i, Pti are the class-related features
of the target calculated by the ith source-specific class-related
feature disentangler, Qsi are the domain-related features of
source i and Qti are the class-related features of the target
calculated by the ith source-specific domain-related feature
disentangler. The extracted P and Q are responsible for gesture
classification and domain factor regression, respectively.

2) Gesture Classifier: We have N gesture classifiers CL =
{CLsi}N

i=1 corresponding to each source domain. The extracted
class-related features flow to gesture classifier which is com-
posed of one fully connected layer with Softmax activation.
The outputs ŷ = {ŷsi

, ŷti}N
i=1 are calculated by

ŷsi
= CLsi

(
Psi;�

si
CL

)
, ŷti = CLsi

(
Pti;�

si
CL

)
. (7)

The purpose of each gesture classifier is to correctly classify
gesture categories of input data. For source domain with label,
we calculate the cross entropy loss

Lsi
cl = − 1

nsi

nsi∑

j=1

yj�
si

log ŷj
si . (8)

For target domain without label, if the confidence of one
class overpasses a threshold γ , we assign the sample pseudo
label ỹti to supervise the training, the way to calculate ỹti fol-
lows the method introduced in Section IV-F which integrates
multiple classifiers’ outputs. For target samples not overpass-
ing the threshold, following [11], we minimize the conditional
entropy with respect to the target distribution to improve target
sample prediction confidence, so the classification loss of the
ith source-specific classifier for target domain is as follows:

Lti
cl = 1

nt

nt∑

j=1

[
bj

tiỹ
j�
ti log ŷj

ti +
(

1 − bj
ti

)
ŷj�

ti log ŷj
ti

]
(9)

where bj
ti = sign[(max(ŷj

si
− γ, 0))+], meaning that when

output ŷj
ti overpasses threshold γ , bj

ti equals to 1, otherwise,
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bj
ti equals 0. Based on (8) and (9), the gesture classification

loss is the weighted sum of source and target classification
losses

Lcl = 1

N

N∑

i=1

(Lsi
cl + αLti

cl

)
(10)

where α is the weighting parameter. From (10), we can observe
that the source domain data only influence the corresponding
source-specific gesture classifier and the target domain data,
though without label, have impact on all the gesture classifiers.

3) Domain Factor Regressor: The extracted domain-related
features are fed into source-specific domain factor regressors
to calculate the regression loss with respect to the ground-truth
location and orientation. We denote source-specific domain
factor regressors as DF = {DFsi}N

i=1. Through the supervision
of regression loss, we can make sure that the input disentan-
gled features are domain-related thus do not influence gesture
classification task. The architecture is a fully-connected layer.
The estimated orientations ô = {ôsi , ôti}N

i=1 and locations
l̂ = {l̂si , l̂ti}N

i=1 are calculated by

l̂τ ⊕ ôτ = DFsi

(
Qτ ;�

si
DF

)
(11)

where τ ∈ {si, ti} and l̂τ ⊕ ôτ indicates that the output is a
vector concatenating the predicted location and orientation.

As the data set does not provide the accurate orienta-
tion, from [8] we know that a change in orientation of
up to 45◦ does not have a significant impact on gesture
recognition accuracy. We term orientation estimation as a clas-
sification problem. So we use cross entropy loss for orientation
estimation and mean-squared error loss (MSE) for location
estimation. The loss function for each domain factor regressor
and the whole loss of domain factor regressors are as follows:

Li
df = 1

nsi

nsi∑

j=1

[(
ljsi

− l̂
j
si

)2 − oj�
si

log Softmax
(

ôj
si

)]

+ 1

nt

nt∑

j=1

[(
ljt − l̂

j
ti

)2 − oj�
t log Softmax

(
ôj

ti

)]
(12)

Ldf = 1

N

N∑

i=1

Li
df. (13)

4) Feature Reconstructor: To make sure that the extracted
class-related features and domain-related features can recover
the original feature, they are concatenated and fed into recon-
structor R = {Rsi}N

i=1 which is composed of a fully connected
layer. The estimated latent features Ẑ = {Ẑsi , Ẑti}N

i=1 are
calculated by

Ẑsi = Rsi

(
Psi ⊕ Qsi

;�
si
R

)
, Ẑti = Rsi

(
Pti ⊕ Qti;�

si
R

)
(14)

where i ∈ {1, 2, . . . , N} and ⊕ represents concatenation. The
MSE is calculated between the recovered feature and the
original feature as follows:

Li
r = 1

nsi

nsi∑

j=1

(
Zj

si
− Ẑ

j
si

)2 + 1

nt

nt∑

j=1

(
Zj

t − Ẑ
j
ti

)2
(15)

Lr = 1

N

N∑

i=1

Li
r. (16)

5) MMD Loss: MMD loss is commonly used in transfer
learning [12] as a standard distribution distance metric. It can
be used to learn a representation that minimizes the distance
between the source and target distributions. We calculate the
MMD loss between each source and target domain’s class-
related feature to align their distributions before classification.
The MMD loss is formulated as follows:

Li
MMD =

∥∥
∥∥∥∥

1

nsi

nsi∑

j=1

φ
(
Pj

si

) − 1

nt

nt∑

j=1

φ
(

Pj
ti

)
∥∥
∥∥∥∥

2

H
(17)

where φ(·) is the feature map which maps the original
representations into the reproducing kernel Hilbert space
(RKHS) H endowed with some characteristic kernel k where
k(Pj

si , Pj
ti) =< φ(Pj

si), φ(Pj
ti) > and < ·, · > represents inner

product. The whole MMD loss is the average of each source
domain’s MMD loss

LMMD = 1

N

N∑

i=1

Li
MMD. (18)

F. Domain Attention and Class Operator

In our architecture so far, each target sample would pass
through each source domain’s gesture recognizer including
those with few similarities. As the target domain may con-
tain multiple latent domains, for instance, the target domain
contains multiple subjects’ data. In this way, each target sam-
ple has different similarities with each source domain. As we
have a common feature extractor, if we want to align each
source domain with the target domain, source domains that
are not similar to the target distribution will weaken the close-
ness of features between the target and its nearest source
domain. So intuitively, we should enhance the influence of
similar source domains while decline the impact of dissimilar
source domains.

Specifically, for each target sample j, we assign a domain
attention vector aj ∈ RN×1, where N is the number of source
domains. The ith element aj

i is the probability of assigning
the target sample j to the ith source domain. aj

i reflects the
similarity between the target sample j and the source domain
i. We utilize the output dj

ti of domain discriminator Dsi to
calculate aj

i, and it is formulated as

aj
i = g ◦ f

(
dj

ti

)
(19)

where f (x) = 1 − 2|x − 0.5| and g(x) =
{

x, if x ≥ ε

0, if x < ε,
where ε is a threshold. This indicates that if the ith discrimina-
tor is too confident (output is close to 0) to identify the origin
of the target sample, the weight of it will be very small or
equal to 0, meaning that the parameter update for this sample
ignores the ith gesture recognizer’s influence.

As the output of each module of gesture recognizer can be
written as functions of Zt and Zsi , all the target losses can
be written as functions of Zt and Zsi . We use liτ representing
the loss functions of the ith gesture recognizer with latent
representations Zsi , Zt as input where τ ∈ {cl, df, r, MMD}.
Let �

si
C be the parameters of the ith gesture recognizer, thus
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we have the above loss functions summarized as

Li
τ = liτ

(
Zsi , Zt;�

si
C

)
. (20)

Let ai = [a1
i , a2

i , . . . , ant
i ]� ∈ Rnt×1 be the attention scores

of assigning target samples to the ith source domain. We
use aj

i multiplying Zj
t extracted by G and then feed them

into the ith source-specific gesture recognizer, the loss can
be reformulated as

Li
τ = liτ

(
Zsi , ai � Zt;�

si
C

)
(21)

where ai � Zt is the dot product of the extracted features and
the attention vector. Here, the attention scheme has the simi-
lar function as dropout, to enhance the influence of similar
source domains’ gesture recognizers and decline the influ-
ence of dissimilar source domains’ gesture recognizers. Thus,
the attention scheme measures the similarities between the
extracted source domain representations and target domain
representations and enables similar source domains’ classi-
fication ability to transfer. Lτ = (1/N)

∑N
i=1 Li

τ , where
τ ∈ {cl, df, r, MMD} meaning that gesture classification loss,
domain factor regression loss, reconstruction loss and MMD
loss obey the above formulas.

The last step before we get target samples’ categories is
to integrate multiple classification results via a class operator.
As we have calculated each target sample’s domain attention
vector, we can use the normalized vector to weigh the classi-
fication result of each source domain. The jth target sample’s
prediction is calculated as follows:

yj
t =

N∑

i=1

aj
i∑N

i=1 aj
i

ŷj
ti (22)

where aj
i is the attention of assigning sample j to source

domain i and ŷj
ti is the output of ith source’s gesture classifier

for target sample j.

G. Objective and Training

The final objective is composed of domain discriminator
loss, MMD loss, classification loss, domain regression loss
and reconstruction loss. The objective is as follows:

min
G,C

max
D

L = Lcl − βLd + ηLdf + ρLr + ξLMMD (23)

where β, η, ρ, ξ are weighting parameters, Lcl is the gesture
classification loss, Ld is the domain discrimination loss, Ldf
is the domain factor regression loss, Lr is the feature recon-
struction loss and LMMD is the MMD loss. From (23), we
can observe that feature extractor G tries its best to cheat
domain discriminator D by maximizing Ld and at the same
time promotes the performance of gesture recognizer C by
minimizing losses from gesture recognizer, i.e., Lcl,Ldf,Lr

and LMMD.
Equation (23) can be divided into two parts, namely, gesture

recognition loss, Lcls, and adversarial loss, Ladv, (23) can be
written as

min
G,C

max
D

L = Lcls + Ladv (24)

where Lcls = Lcl+ηLdf+ρLr+ξLMMD and Ladv = −βLd. As
there are multiple source domains and a target domain, when

Algorithm 1 Learning Algorithm
Input:

N source labeled datasets {Xsi , Ysi }N
i=1; target unlabeled dataset

Xt; initiated feature extractor G, gesture recognizer C and domain
discriminator D; confidence threshold γ ; classification epochs
Tc; extractor epochs Tg; discriminator interval Td; weighting
parameters α, β, η, ρ, ξ .

Output:
well-trained feature extractor G∗, domain discriminator D∗ and
gesture recognizer C∗.

1: while not converged do
2: for epoch = 1 : Tg do
3: Sample mini-batch from {Xsi}N

i=1 and Xt
4: if mod(epoch, Td)==0 then
5: Update D by Eq. (23);
6: end if
7: Estimate discriminator outputs dti, calculate attention ai, i ∈

{1, 2, .., N} by Eq. (19).
8: Calculate losses by Eq. (21).
9: Update G by minimizing βL′

adv + Lcl + ηLdf ;
10: end for
11: Estimate discriminator outputs dti, calculate attention ai, i ∈

{1, 2, ..., N} by Eq. (19). Estimate confidence for Xt by
Eq. (22). Assign pseudo labels for Xt with confidence larger
than γ .

12: for epoch=1:Tc do
13: Sample mini-batch from {Xsi}N

i=1 and Xt.
14: Estimate discriminator outputs dti, calculate attention ai, i ∈

{1, 2, ..., N} by Eq. (19).
15: Calculate Lcls by Eq. (21).
16: Update G and C by Lcls from Eq. (24).
17: end for
18: end while
19: return G∗ = G, C∗ = C, D∗ = D

(a)

(b)

(c)

Fig. 4. Layouts of three evaluation environments, figure from [10].
(a) Classroom. (b) Hall. (C) office.

we minimize the above equation, the distributions change
simultaneously, which leads to an oscillation that spoils our
feature extractor. Following [13], we use domain confusion
which performs stably to learn the mapping G. We have the
following multidomain confusion loss:

L′
adv = 1

N

N∑

i=1

⎡

⎣ 1

nsi

nsi∑

j=1

Lcf
(
dj

si

) + 1

nt

nt∑

j=1

Lcf

(
dj

ti

)
⎤

⎦ (25)

where

Lcf (x) = 1

2
log (x) + 1

2
log (1 − x). (26)

The training process adopts an alternative way to train three
modules as shown in Algorithm 1.

V. EXPERIMENTS

This section presents the implementation and detailed
performance of our framework.
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Fig. 5. Typical setup of devices and domains in one environment, figure
modified from [10].

Fig. 6. Sketches of gestures evaluated in the experiment, figure from [10].

A. Experiment Methods

1) Data Set: We use the public Widar 3.0 [10] data set. The
data set is collected from three rooms, 16 users, five locations,
and five orientations in total. Fig. 4 shows the layouts and sens-
ing areas of the three experimental environments containing
various types, i.e., classroom, hall and office. Fig. 5 shows a
typical example of the deployment of devices and domain con-
figurations in the sensing area, which is a 2 m × 2 m square.
As illustrated in the original paper, there are six receivers
deployed in the environment, in our experiments, we con-
sider a more practical situation where only the first two links
are used for gesture recognition which are circled by the red
dashed box as shown in Fig. 5. In this study, we classify six
commonly used gestures as shown in Fig. 6. The data set
contains 11 250 data samples (15 users × 5 positions × 5
orientations × 6 gestures × 5 instances).

2) Input and Preprocessing: We adopt DFS as our model
input. As for the SignFi [28] baseline, we use denoised CSI as
input. The DFS sequence has the shape of M (the number of
receivers) × F (the number of Doppler frequency samples) ×
T (the number of time samples). As we first use CNN model
to extract spatial information and then apply GRUs to extract
temporal information, we treat each time snapshot as a DFS
profile with dimension 2×121 and feed them into CNN model.
The problem with it is that the sampling rate of DFS data is
1000 samples/s, so there are more than 1000 time steps in a
DFS sequence. With so many time steps, the training of GRUs
would suffer from gradient vanishing problem. Therefore, we
reshape the DFS sequence as M × F × C × �(T/C)�, where
M = 2, F = 121 and C = 100. The above operation integrates
100 time steps and regards them as the channel number. In this
way, the GRUs only contain around a dozen time steps and
both GRUs and CNNs can be well trained.

B. Baseline Methods

1) CNNGRU Model: We modified the CNNGRU model
used in [10] whose input is BVP a little bit to adapt
to our DFS input. We make the architecture exactly the
same as a combination of feature extractor G, a class-
related feature extractor CRi and a gesture classifier CLi

in our model. In this way, we can have a fair comparison

between this baseline and our model by guaranteeing the
same backbone architecture. We only use the source data
to train and directly apply the model on the target data for
prediction.

2) SignFi [28]: Apart from using DFS as input, we
also show the CSI-based gesture recognition method’s
performance. SignFi is designed for sign language recogni-
tion. In our experiment, we modify the number of classes
to 6 and use the same CNN architecture. The inputs are
the concatenation of CSI magnitudes and phases of two
links.

3) DCTN [13]: This article considers the situation where
the labeled data are collected from diverse domains and the
model is to be deployed in a single target domain. In this
model, the domain is defined by discrete environment-subject
pairs without considering differences caused by continuous
locations and orientations. To make a fair comparison, the
feature extractor and all the domain discriminators have the
same architecture as our model. Each source domain’s gesture
classifier has the same architecture as the combination of our
class-related feature extractor CRi and gesture classifier CLi

since this is the path data passing through to get the gesture
label.

4) EI [9]: EI is a state-of-the-art adversarial learning
scheme for unsupervised domain adaptation and it can be
applied for multiple source domains and target domains. There
is only one feature extractor, one domain discriminator and
one gesture classifier in EI. The domain discriminator is
responsible for identifying the correct domain label for all the
data which is a multiclass classification problem. The feature
extractor adopts the same architecture as that in our model.
For domain discriminator, we only change the number of out-
put units of the last layer to the number of all the domains
and change the activation function from Sigmoid to Softmax.
We also change the input units of domain discriminator to the
dimension of the concatenation of gesture classifier’s output
and feature extractor’s output. For gesture classifier, we use the
same architecture as the combination of class-related feature
extractor CRi and gesture classifier CLi of our model.

5) Widar 3.0 [10]: In Widar 3.0 paper, the authors extract
the domain invariant feature BVP based on 6 links’ DFS data
and feed them into a model combining CNNs and GRUs. We
use the method in that paper as a baseline with BVP as input.
Note that this method needs 6 links’ data while our model only
uses 2 links’ data. We will show that our model can achieve
comparable results with less data under various configurations
as Widar 3.0.

6) Variant of Our Model: As there are multiple modules in
our architecture, how to make use of all the source domains to
maximize benefits is essential. We substitute the domain atten-
tion scheme and obtain a variant of our model. Specifically,
we do not use our domain discriminators’ instance level out-
puts to amplify or reduce training of each category classifier.
We use the same scheme as in [13] which uses target sample’s
loss to get weighted predictions and uses them to supervise
the training of feature extractor. We also adopt the same class
operator as that in [13].

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on September 13,2021 at 04:17:47 UTC from IEEE Xplore.  Restrictions apply. 



KANG et al.: CONTEXT-AWARE WIRELESS-BASED CROSS-DOMAIN GESTURE RECOGNITION 13511

TABLE I
ACROSS PERSON CLASSIFICATION ACCURACY (%) COMPARISON

(a) (b) (c)

Fig. 7. Across person confusion matrix. (a) Our model (P = 0.92, R =
0.92, F1 = 0.92). (b) DCTN (P = 0.85, R = 0.84, F1 = 0.84). (c) EI (P =
0.84, R = 0.84, F1 = 0.84).

C. Cross-Domain Evaluation

We evaluate the overall performance of our model on cases
across different domain factors, including subject, environ-
ment, location and orientation. When we evaluate on each
domain factor, we keep the other domain factors as the same.
We also evaluate the overall performance of our model when
all the four influential domain factors are different. For each
case, 80% of the target domain data are used to train with
the source data and all the target domain data are used to
test, indicating that for more data collected from the same
configuration, we do not need to train again. We conduct
experiments using all the baseline methods to validate our
model’s superiority.

1) Across Subject: Different subjects’ data may show dif-
ferences due to subjects’ different behaviors of performing
gestures and their body shapes. To evaluate on different sub-
jects, we use data from Room 1 where there are 8 people
in total. From some preliminary experiments, we found that
discrepancies between different subjects are relatively small
compared to other domain factors. Without loss of generality,
we choose a subset of User14, User15 and User16 in Room 1
to evaluate the model where User14 is a female and User15
and User16 are males. Note that we will evaluate on influence
of different subject numbers in Section V-D3. Each time, we
leave one user as the target domain and the other two users
as the source domains. The results can be seen in Table I.

From Table I, we can observe that our model achieves the
highest accuracy under three cases compared to other baseline
models. Note that this accuracy is comparable to the result
shown in Widar 3.0 [10] using seven person’s data to train
with six links. We can see from the table that our model out-
performs Widar 3.0 when only using two persons’ data to train,
implying that our model is suitable for situations where fewer
user data are available. We then compare confusion matrices
of three domain adaptation methods, i.e., EI, DCTN and our
model. The confusion matrices of three across person cases are
integrated to get the average confusion matrix for our model,
DCTN and EI as shown in Fig. 7(a)–(c), respectively. We can

TABLE II
ACROSS ROOM CLASSIFICATION ACCURACY (%) COMPARISON

Fig. 8. Across room confusion matrix. (a) Our model (P = 0.88, R =
0.88, F1 = 0.88). (b) DCTN (P = 0.81, R = 0.81, F1 = 0.81). (c) EI (P =
0.76, R = 0.76, F1 = 0.75).

observe that for three models, the gesture “Push&Pull” always
corresponds to a lower accuracy. As said in [10], the gesture is
mostly performed just in front of the torso and is most likely
to be blocked when conducted under orientations away from
the receiver. By horizontal comparison with other models in
each gesture, our model achieves the best results in all cate-
gories and has the highest average value in precision, recall
and macro-F1 score.

2) Across Room: In the data set, different rooms have dif-
ferent user numbers, to avoid data set size’s influences, we
keep each room’s person number as the same. We choose 3
persons from each room and obtain a subset of the whole data
set which is User14, User15 and User16 in Room 1, User1,
User2 and User6 in Room 2 and User7, User8, and User9 in
Room 3. The experiments take one room’s data as the target
domain and the other two rooms’ data as the source domains.
As the subjects do not conduct the same experiments in all
the rooms but only occur in one room, the across room case
is actually across person at the same time. The experiment
results are shown in Table II.

From Table II, we find that our model shows consistent
results under several cases with an average accuracy of 87.8%.
We can find that the amount of accuracy improvement is more
than that in across person case compared with most baselines.
Our model achieves similar accuracy as Widar 3.0 using 6
links.

From Fig. 8, we find that our model has the consistent and
highest accuracy in each category while the other methods
suffer from much confusion for certain gestures, e.g., clap and
slide. Our model also remains the highest value of average
precision, recall and macro F1 score.

3) Across Location: To evaluate performance of across
location situation, we use every combination of four locations,
all five orientations, three users in room 1 as the source
domain, and the last unseen location with the same set of
orientations, users and rooms’ data as the target domain. The
result comparison and detailed per class accuracy are shown
in Table III and Fig. 9, respectively. From Table III, we can
find the average accuracy is 93.6%. The distinctions among
the five cases are relatively small and the improvement of
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TABLE III
ACROSS LOCATION CLASSIFICATION ACCURACY (%) COMPARISON

Fig. 9. Across location confusion matrix. (a) Our model
(P=0.93,R=0.92,F1 = 0.92). (b) DCTN (P = 0.90, R = 0.90, F1 = 0.90).
(c) EI (P=0.88,R = 0.88, F1 = 0.88).

our model compared to other methods using DFS varies from
2.5% to 7.5%.

We also noted that our model has the similar average accu-
racy as the variant which substitutes our attention scheme. The
reason why the improvement is not obvious under across loca-
tion case is that our attention scheme is based on the outputs
of our source-specific domain discriminators whose outputs
should be similar in this situation as the source contains the
same subjects. For example, we use location 5 as the target,
the number of discriminators is determined by the number
of environment-subject pairs so there are three discriminators
in total. The ith discriminator needs to distinguish between
data from Useri collected at location 1 to 4 and data from
{Userj1, Useri, Userj2} collected at location 5. If a target sam-
ple is from Useri, then it has the most in common with source
i and assigns the most weight to that domain. As each user
collected the same quantity of data, the weight for each source
domain should be similar. So the gain of attention scheme is
not clear.

From Fig. 9, our model still remains best results in all the
categories and the highest average precision, recall and macro
F1 score compared to other domain adaptation methods.

4) Across Orientation: Similar to the across location set-
tings, we divide Room 1’s User14, User15 and User16’s data
by orientation and let each orientation as the target and the
other four orientations as the source. Table IV shows the over-
all trend of accuracy variation, 2, 3, 4 orientations as the
middle orientations get higher accuracy than those at edges.
We have an overall accuracy of 87.1%. Orientations 3 and
4 have an accuracy above 90% while the accuracy declines
over 10% for orientations 1 and 5. This is reasonable since
orientation 1 and 5 are too biased and the receiver may not
capture the full pattern of gestures. Widar 3.0 using BVP has
better results than our model in these orientations, since BVP
is generated from 6 links’ DFS profiles, a more completed
picture. And the integrated confusion matrix in Fig. 10 shows
that Push&Pull, “Draw circle” and “Draw zigzag” gestures
have a lower accuracy which may be due to body blockage
interference influence where the other three gestures get a

TABLE IV
ACROSS ORIENTATION CLASSIFICATION ACCURACY (%) COMPARISON

Fig. 10. Across orientation confusion matrix. (a) Our model (P = 0.86, R =
0.86, F1 = 0.86). (b) DCTN (P = 0.80, R = 0.80, F1 = 0.80). (c) EI (P =
0.82, R = 0.81, F1 = 0.81).

TABLE V
CASES TESTED ACROSS FOUR FACTORS

TABLE VI
ACROSS FOUR INFLUENTIAL FACTORS CLASSIFICATION

ACCURACY (%) COMPARISON

high accuracy all above 85%. Compared to other methods,
our model achieves the highest average precision, recall and
macro F1 value.

5) Across Four Influential Factors: To further validate the
superiority of our proposed framework, we evaluate a chal-
lenging case where all the four factors are different between
the target and all the source domains. Since there are too
many combinations of the four factors (i.e., environment, sub-
ject, location and orientation), we choose three cases to test.
Table V shows the corresponding source and target domains
of each case. Based on across room cases in Section V-C2,
each time we still use one room as the target and the other two
rooms as the source domains. Here, each room contains three
persons which is consistent with the settings in Section V-C2
For orientation and location, this time we only use data from
four locations and four orientations in the source rooms and
test on data from all the five locations and orientations in the
target room. Table VI shows the results. We find that our model
has consistent results under several cases with an average accu-
racy of 85.7%. From the perspective of average accuracy under
three cases. Compared with the Widar 3.0 method that needs
six links, we achieve the same average accuracy.
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Fig. 11. Across four influential factors confusion matrix. (a) Our model
(P = 0.86, R = 0.85, F1 = 0.86). (b) DCTN (P = 0.73, R = 0.72, F1 =
0.72). (c) EI (P = 0.73, R = 0.73, F1 = 0.73).

Fig. 12. Accuracy comparison of model w/ or w/o pretrained weights.
(a) Source: user 14, 15, and 16 in room 1; target: user 7, 8, and 9 in room 3;
pretrained weights from case, where user 1, 2, and 6 in room 2 are the target.
(b) Source: user 14, 15, and 16 in room 1; target: user 13 in room 1; pre-
trained weights from case where user 12 in room 1 is the target. (c) Source:
user 5, 10, and 11 in room 1; target: user 7, 8, and 9 in room 3; pretrained
weights from case, where user 14, 15, and 16 in room 1 are the source and
user 1, 2, and 6 in room 2 are the target.

From Fig. 11, we find that our model has the consistent and
highest accuracy in each category while the other methods
suffer from much confusion for certain gestures, e.g., draw
circle. Our method also achieves the highest value of precision,
recall and macro F1 score.

6) Training for New Target Domain: To relieve training
efforts for new target domain, we can use previous trained
model to initialize the weights for new models. In this way,
fewer epochs can be used to make the model converge. Fig. 12
shows the accuracy comparison between model trained with
previous model weights and model trained from scratch. We
can see that for all the cases, compared with models trained
from scratch, the accuracy of model trained with previous
model weights is higher and the epochs to reach the stable
accuracy is much fewer.

7) Run-Time Analysis: We report the training and inference
time of our proposed method, EI and DCTN. We run the exper-
iments on a cluster node with 2 Intel Xeon E5-2670 v3 and
2 Nvidia Tesla K80. We measure each epoch’s time and the
number of epochs needed to converge to show the total training
time. We evaluate under across person case where user 14 and
15 are the source domains and user 16 is the target domain.
Fig. 13 shows the convergence curve of the three methods. We
can see that our method quickly converges within 20 epochs
while the other two methods have similar convergence speed
and cost, about 100 epochs. Table VII shows the training time
and inference time. The target domain have 750 samples in
total and the total inference time is 32 s, and thus it takes
about 42.7 ms to infer each sample’s class.

D. Parameter Study

In this section, we tune the input parameters of our frame-
work to see their impact. We will conduct evaluations on
impact of selected links, impact of location and orientation
estimation error, impact of subject number, impact of link

Fig. 13. Convergence

TABLE VII
RUNNING TIME (IN SECONDS)

Fig. 14. Impact of selected links.

number, impact of location number and impact of orientation
number.

1) Impact of Selected Links: This section studies the impact
of selecting different receiver locations. According to the
deployment of receivers in Fig. 5, we select nine different
combinations of two links neglecting symmetrical settings and
conduct experiments under across orientation situation where
orientation 5 is the target. We choose to evaluate on across ori-
entation case since its performance is closely correlated with
link locations as inappropriate link locations cannot cover the
entire sensing area and capture human movements. Fig. 14
shows the accuracy using data of different links. We can
find that there are large performance discrepancies between
different selected links because we can only use such a lim-
ited number of links and the locations of them are especially
important for gesture recognition in oblique orientations with
respect to receivers. According to the results, we can achieve
a higher accuracy when we deploy receivers from both sides
of the transmitter to maximize the coverage of the sensing
area and various orientations. And the accuracy even achieves
88.5% accuracy with as large as 10% accuracy improvement
compared to our aforementioned settings.

2) Impact of Location and Orientation Estimation Error:
Locations and orientations as inputs of our framework are esti-
mated by WiFi-based motion tracking systems and inevitably
have errors. To evaluate their impact, we add uniform noise to
the ground-truth locations and orientations. For locations, we
add noise uniformly distributed in the range [−δl, δl] to each
coordinate, where δl ∈ {0, 0.2, 0.4, 0.6}. For orientations, as
we term orientation estimation as classification problem and
there are 45◦ difference between different categories. So if
we add noise whose absolute value is less than 22.5◦, the
categories will not be changed and the accuracy will not be
influenced. Thus, we only add noise uniformly distributed
in the range [−δo, δo], where δo ∈ {0, 30, 40}. We evaluate
impact of location error on across location case where location
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Fig. 15. Impact of location error.

Fig. 16. Impact of orientation error.

Fig. 17. Impact of subject number.

Fig. 18. Impact of link number.

5 is the target while evaluating impact of orientation error on
across orientation case where orientation 3 is the target. As
shown in Fig. 15, the overall accuracy remains above 94%
when the range of location error is within ±0.6 m, indicating
that the model is not sensitive to location noise. We can
observe from Fig. 16 that decreases in accuracy as orientation
error increases is larger than deviation observed for location
error. But the accuracy drops when the orientation noise
range is as high as ±30◦ and the decrease is approximately
3%. Therefore, we believe that our model is robust enough
within error range of estimated locations and orientations.

3) Impact of Subject Number: In this section, we study the
impact of number of subjects in the training set. In specific, we
fix User16 in Room 1 as the target, and sequentially enlarge
the training set from only User15 to all the other experiment
users in Room 1. There are 7 cases in total and the results are
shown in Fig. 17. The gesture recognition accuracy increases
from 87.4% to 95.2% as the number of subjects varies from 1
to 7. The reason comes from that the increase in the amount
of training data allows our model to be trained well. Note that
the accuracy discrepancy is less than 10% and the accuracy
remains above 87% when there is only one person in the train-
ing set. Also note that there are slight fluctuations in the middle
as the number of persons increases which owe to the added
person carrying little net and valid information.

4) Impact of Link Number: There are 6 links’ data provided
in the data set. We will study how much gain in accuracy can
be obtained by increasing link number in this section. We
consider a case that has low performance, that is across orien-
tation situation where orientation 5 is regarded as target. From
Fig. 5, we find that the layout is symmetrical along the diago-
nal axis and our selected receivers are at the same side. So by

Fig. 19. Impact of location number.

Fig. 20. Impact of orientation number.

increasing link number, we can get a more complete record of
the signal. We sequentially add the receivers into the selected
collections from receiver 1 to receiver 6 and the results are
shown in Fig. 18. As we increase the link number, the accu-
racy gradually increases and it reaches above 87% when we
use all the six links. It can be seen that using four links has a
similar accuracy as using three links. Different architectures of
feature extractor G contribute to this as different link number
forms profiles with different shapes to be fed into the CNN
model. By carefully adapting the parameters, such as kernel
size, of different link numbers, it is expected to achieve better
results. There are also works [29] considering how to integrate
different views’ data.

5) Impact of Location Number: We explore whether using
fewer locations as source can still get good result. We design
four cases where there are 4, 3, 2, 1 locations in the source
domain while the remaining locations are in the target domain.
Fig. 19 shows that the accuracy declines over 10% as the num-
ber of source locations decreases from 4 to 1. But when there
is only 1 location as source, the accuracy is still above 81%
showing robustness of our model for different locations. In
this way, when we collect labeled source data, we can con-
duct gestures in fewer locations which significantly reduces
data collection burdens.

6) Impact of Orientation Number: Similar to study on
impact of location number, we arrange the 5 orientations
in sequence and separate them in the middle to form four
cases where the training data set has 1, 2, 3, 4 orienta-
tions, respectively. The results are shown in Fig. 20. We
observe that the accuracy rapidly drops from 78.1% to 35.4%
as the orientation number varies from 4 to 1. The reason
is twofold. On the one hand, as the number of orientation
decreases, the size of training data set decreases. On the
other hand, there is large discrepancy between different ori-
entations due to possible blockages and different reflection
angles. To have a reasonable performance, we need to keep
at least three orientations to get an accuracy above 70%. And
the users should try to face the transceivers when performing
gestures to increase recognition accuracy without excessive
angles.

VI. CONCLUSION

In this article, we present a deep learning framework to rec-
ognize device free human gestures with only two links’ signal
data. Especially, the labeled data are collected from multiple
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domains which are different from where the unlabeled data
are collected. With a thorough consideration of gesture cate-
gory irrespective domain information including environment,
subject, location and orientation, the proposed model contains
an adversarial training scheme together with feature disentan-
glement modules to remove all these domain information’s
influences. An attention scheme whose attention reflects dif-
ferent similarities between source domains and target samples
and a class operator integrating each source classifier’s output
are proposed to promote positive transfer from source to target.
Extensive experiments on the Widar 3.0 data set demonstrate
the superiority of the proposed framework.
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