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Abstract—Characterizing the end-to-end network available
bandwidth (ABW) is an important but challenging task. Although
a number of ABW estimation tools have been introduced over
the past two decades, applying them to the real-world networks
is still difficult because of the biased results, heavy load, and
long measurement time. In this paper, we propose a novel Burst
Queue Recovery (BQR) model to infer the ABW. BQR first
induces an instant network congestion and then observes the
one-way delay (OWD) variation until the tight link recovers from
the congestion. By correlating the OWDs with the queue length
variation, BQR can calculate the ABW accurately. Compared to
the traditional probe gap model (PGM) and probe rate model
(PRM), our theoretical analysis and simulations show that BQR
is more tolerant to the transient traffic burst and supports the
scenarios with multiple congestible links. Based on the model,
we build FABMon, a fast and accurate ABW estimation tool.
Our experiments show that FABMon can measure ABW within
50 milliseconds, and achieve much more accurate measurement
results than the existing tools with a very small volume of probe
packets.

I. INTRODUCTION

End-to-end available bandwidth (ABW) describes the maxi-
mum transmission capability of a network path during a period
of time, which is widely used for many applications, such as
video streaming [1], router selection [2], congestion control
[3]. Therefore, it attracts considerable research interests. In the
past two decades, many ABW estimation tools have emerged
[4–19]. These actively-probing tools can be classified into
Probe Gap Model (PGM) and Probe Rate Model (PRM),
respectively. The PGM solutions employ the dispersion of the
probe packets to estimate the ABW, while the PRM ones find
the turning point of the sending rate that causes congestion.

The existing ABW estimation models are usually based
on the assumption that the network is a single-hop, lossless,
and First-In, First Out (FIFO) multiplexer of probing packets
and cross traffic. However, today’s Internet becomes more and
more complex and cannot be modeled in such a simple way.
When the network condition deviates from the assumption, the
ABW estimations may be biased. In fact, the PGM has a high
probability of underestimating the ABW [20, 21]. The PRM
also has problems of inaccuracy and inefficiency. PRM-based
tools send a very large volume of measurement traffic in terms
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of probe trains to find out the turning point of the sending
rate that may cause network congestion either iteratively [4–
6] or at predetermined rates [10, 13–19]. As the PRM usually
needs to send trains at rates lower than the ABW, it is very
inefficient and increases the measurement time. Moreover, a
longer measurement time makes the model assumption of
ideally constant cross traffic unguaranteed. As a result, PRM
can produce inaccurate ABW estimations as well as induce
high costs in both traffic and time.

In this paper, we try to tackle the fundamental limitations
of the state-of-the-art ABW estimation tools. In particular,
we aim to design a robust ABW estimation strategy that is
adaptive to today’s Internet environment with non-constant
cross traffic and multiple congestible links1. To achieve this
goal, we need to overcome the following challenges:

• Practicability. Unlike the unpractical assumptions of
the PGM and PRM models, we need a new model
that satisfies the real Internet scenarios, where multiple
congestible links and dynamic cross traffic exist.

• Robustness. ABW measurements rely on accurate times-
tamps of probing packets, which can be affected by some
operations of the system protocol stack. For example, the
Interrupt Coalescing (IC), i.e. grouping multiple packets
to a batch in a single interrupt, may delay the probes.
These noises should be taken into account for robustness.

To this end, we first introduce the Burst Queue Recovery
(BQR) model. Unlike PGM and PRM respectively based on
the information of probe dispersion and appropriate probe
sending rate, BQR uses the one-way delay (OWD) of a
network path to estimate its ABW. BQR sends a loading train
to induce observable congestion, delicately controlled without
packet loss. When the last packet of the loading train arrives
at the tight link, the queue length of the tight link reaches
its peak. The network congestion will be alleviated when
the tight-link queue length decreases. We prove that ABW
can be inferred from the queue length change with certain
requirements. Since the queue length cannot be measured
directly by the end, BQR instead utilizes a sparsely distributed
train (named inspection train) to inspect the OWD variation
for the ABW estimation.

1Link l is a congestible link iff the maximum arrival rate of the probe
traffic is larger than its ABW.978-1-6654-6824-4/22/$31.00 ©2022 IEEE
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BQR outperforms the existing ABW models in two respects.
First, compared to PGM, BQR can work under networks
with multiple congestible links. Second, BQR saves the probe
budget and shortens the measurement time by removing some
inefficient low-rate trains, compared to PRM. BQR measures
the sum of the cross traffic during the link recovery phase,
which is more robust to the traffic burst. Accordingly, BQR
significantly improves the estimation accuracy. In short, BQR
is compatible with the current Internet with multiple con-
gestible links and dynamic cross traffic.

Based on BQR, we then implement the ABW estimation
tool of (Fast and Accurate Bandwidth Monitoring). We com-
pare FABMon with other four tools, including pathload [5],
Spruce [9], PTR [6], and ASSOLO [16]. The testbed experi-
ments show that FABMon outperforms them in terms of higher
accuracy, smaller probe budget, and shorter measurement time
in simple (two congestible links) and complex (multiple links
with variable traffic loads) network conditions. The evaluation
with real-world traffic traces also confirms the performance of
FABMon.

The contributions of the paper are summarized as follows:
• We propose a novel ABW estimation model, BQR, to

improve the accuracy and robustness of ABW estimation.
We perform theoretical analysis to prove the correctness
of BQR. BQR achieves very low relative error no matter
the distribution of the cross traffic is constant, Poisson,
or Pareto.

• We implement FABMon based on BQR in Linux as one
applicable tool. FABMon involves probe train scheduling,
recovery assessment, and recovery locating algorithms.
In FABMon, the possible system noises induced by
timestamping, Context Switch (CS), and IC are mitigated
by our delicate optimization. The code is shared at:
https://github.com/godblessforhimself/BurstQueueRecovery.

• We conduct comprehensive experiments to evaluate the
performance of FABMon. To ensure the reliability of
testbed, we verify the stability of the timing source, then
check the precision of the traffic generation tool, iPerf3.
FABMon is then compared with four ABW tools in
both simple and complex network conditions. To further
prove the effectiveness of FABMon, we also use two real
network traces for the validation.

II. RELATED WORK

Active ABW measurement techniques can be divided into
PGM and PRM by the information used for estimation: packet
dispersion for PGM and saturation rate for PRM [9].

A. Segmented Linear Relation

Let vsend and vrecv represent the sending and receiving rates
of the train, respectively. In TOPP [4], as long as the cross
traffic is constant and stable, “ vsend

vrecv
-vsend” can be modeled

as a segmented linear function as below:

vsend
vrecv

= α · vsend + β (II-A.1)

where α and β are constants for each segment. The segment
number is determined by the number of congestible links in
the path. Let the sending rate at the start of the ith segment
be vi−1. The sending rate in the first segment satisfies 0 <
vsend < v1. There is no congestion at the first segment, so
α = 0, β = 1 for it. In the second segment, v1 < vsend < v2
and α = 1

Ct
, β = vx

Ct
where Ct is the capacity of the tight link

and vx is the cross-traffic rate at the tight link. In fact, v1 is
the path ABW.

B. Probe Gap Model (PGM)

Representative PGM-based ABW estimation tools include
CPROBE [8], Spruce [9], IGI/PTR [6], traceband [7], and
DietTOPP [11]. PGM tools use the relation that the packet
dispersion is caused by the arrival cross traffic during the gap
gin :

(gout − gin) · Ct = vx · gin (II-B.1)

where Ct is the link capacity, gin is the arrival gap, gout is
the departure gap, vx is the cross-traffic rate. Eq. (II-B.1) is
actually a special case in Eq. (II-A.1) when vsend = Ct and
v1 < vsend < v2:

vsend
vrecv

=
vsend
Ct

+
vx
Ct

(II-B.2)

Therefore, the application of the PGM relies on several as-
sumptions: the sending rate and the receiving rate should be
equal to the arrival rate and the departure rate at the tight
link; the sending rate should be equal to the capacity of the
tight link; the rate v2 > Ct. Once one assumption is not true,
the PGM will be biased. For example, the PGM-based tool
overestimates the cross-traffic rate if there exists cross traffic
at the non-tight link, as shown in § VI-B.

C. Probe Rate Model (PRM)

PRM-based tools do not conform to the single-bottleneck
assumption and are therefore more generic than PGM-based
ones [22]. We further divide them into feedback-based and
multi-rate sub types. Feedback-based PRM tools, such as
TOPP [4], pathload [5], and PTR [6], adjust the probe sending
rate according to the feedback of its last trial from the receiver.
Only when the sending rate is close enough to the ABW will
it stop the iteration. Due to the iterative nature, they need
a longer measurement time and produce a larger overhead
than other tools. Multi-rate PRM tools include PathChirp [10],
ASSOLO [16], Yaz [14], etc. They send a fixed number of
probe trains at predetermined rates and employ optimized
algorithms or machine learning techniques, with upper bounds
of measurement time and overhead.

Since PRM-based tools need multiple trains, it inevitably
results in the problem of inefficiency. Another issue of the
PRM is that the Internet is dynamic and the ABW could vary
for different trains. In § VI-A, we find the numbers of trains for
pathload and PTR are 25-97 and 9-67 for one measurement,
respectively. The duration of each train is ≈ 10 ms. However,
as discussed in [23], traffic rates at small time scales (1-100
ms) can be uncorrelated. Our analysis on real network traces
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confirms that the Internet traffic is bursty(from -100% to 100%
deviations from the average for bigFlows and from -20% to
20% for CAIDA [24]) in 10 ms time granularity. Therefore,
PRM-based tools, especially feedback-based ones, have poor
performance in real-world deployment.

III. BURST QUEUE RECOVERY (BQR) MODEL

A. Metrics and Measurement Model

We consider a n-hop network path between the measuring
and remote nodes. As shown in Fig. 1, there are n− 1 inter-
mediate nodes, assumed to be store-and-forward devices with
FIFO queues. Hop Hi comprises the node and its outgoing
link Li with a capacity of Ci in bits/s, where 1 ≤ i ≤ n.
Let the cross-traffic rate on Li be Ti, and the ABW for Li be
Ai = Ci − Ti. The narrow link of the path is defined as the
link with the smallest capacity and the tight link is the link
with the smallest ABW. If there are multiple links with same
smallest ABWs, we consider the first as the tight link. The
ABW of the path (A) is determined by the tight link Lk, i.e.,
A = min

i
(Ai) = Ak.

1st  hop

Measuring node Remote node

... i ... n-1

ith  hop nth  hop

1

2nd  hop
Probe packet Cross traffic

H1 H2 Hi Hn

Fig. 1: The model of FABMon on a n-hop network path.

In the active ABW measurement paradigm, the measuring
node injects a sequence of probe packets into the network.
During the measurement phase, we assume that the route does
not change for the path. Here we define m-hop traffic as the
traffic that passes exactly m links in the measured path.

B. The BQR Model

BQR injects probes into the network in order to induce
network congestion, and then observe the OWDs of the probes
until the network recovers from congestion. Specifically, BQR
injects an amount of P1 traffic at a constant rate in the loading
phase into the path. Due to the high rate of the loading
train, the network, including the tight link, gets congested
and the OWD increases. After P1 is sent, BQR starts to send
another P2 traffic at a low rate in the inspection phase, for
the purpose of monitoring the OWD. During the inspection
phase, the queues of the tight link and other congestible links
decrease, and finally the path OWD is back to the level before
congestion. We define the recovery time as the time for a link
from entering to exiting the congestion state. We find that the
recovery time is in inversely proportional to the link ABW.
As the tight link has the smallest ABW, it has the longest
recovery time, i.e., the OWD recovery time of the path.

Let t(0)i be the time when the loading train arrives at link Li.
Let t(1)i be the time when the last packet of the loading train
arrives at link Li. Let t(2)i be the time when the queue length
of Li first becomes zero after t(0)i . Denote the queue length at

t
(0)
i , t(1)i and t

(2)
i by Q

(0)
i , Q(1)

i and Q
(2)
i , respectively. Ideally,

the queue of Li is increasing between t
(0)
i and Q

(1)
i , and is

decreasing between Q
(1)
i and Q

(2)
i . Let ∆Qi = Q

(2)
i − Q

(0)
i

and ∆ti = t
(2)
i − t

(0)
i . We then have the first theorem:

Theorem III.1. Let Ai be the ABW of link Li, P be the
volume of the packets that BQR has sent before t

(2)
i , then

Ai =
P−∆Qi

∆ti
.

Proof. Let Ti be the average cross-traffic rate at link Li. Since
the queue length variation ∆Qi equals to the arrival traffic
minus the departure traffic, we have

∆Qi = Ti ·∆ti + P − Ci ·∆ti (III-B.1)

After transposition, we have

(Ci − Ti) ·∆ti = P −∆Qi (III-B.2)

By substituting Ai = Ci − Ti into the Eq. (III-B.2),

Ai = (P −∆Qi)/∆ti (III-B.3)

Define ∆t = max
i

(∆ti). Ideally, Q(0)
i = 0 for all links. In

practice, Q(0)
i > 0 as there are bursts of traffic. Assume P

is chosen so that P ≫ max
i

(Q
(0)
i ), then ∆ti ≈ P

∆Ai
, which

means the link with the smallest ABW has the longest recovery
time. So ∆t = ∆tk, where tk is the recovery time of the tight
link. Thus, we have the BQR equation:

Â = P/∆t (III-B.4)

where Â represents the ABW estimation.
In the following, we quantitatively analyze the influence of

∆Qk on ABW estimation. The path OWD consists of the time
of transmission, propagation, processing, and queuing along
the path. Let D(t) denote the OWD at time t, then:

D(t) = (
∑
i

Qi(t)

Ci
) + β (III-B.5)

where Qi(t) is the queue length of the link Li at time t, Ci is
the capacity of the link Li, β is the rest of the delays which is
relatively stable and can be considered as an intrinsic property
of the path. We then have another theorem:

Theorem III.2. The queue length change ∆Qk of the tight
link Lk can be bounded by the OWD variation and the
capacity of the tight link (Ck).

Proof. The queuing delay at the tight link (Dk) should be no
more than the sum of the queuing delays of all links, i.e.:

Dk(t) ≤ D(t)− β (III-B.6)

Since Dk(t) =
Qk(t)
Ck

, we have:

Qk(t) ≤ (D(t)− β) · Ck (III-B.7)

Let λ1 = D(t1)− β and λ2 = D(t2)− β. Then we have:

0 ≤ Qk(t1) ≤ Ck · λ1 (III-B.8)
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0 ≤ Qk(t2) ≤ Ck · λ2 (III-B.9)

Since ∆Qk = Qk(t2)−Qk(t1):

−Qk(t1) ≤ ∆Qk ≤ Qk(t2) (III-B.10)

The boundaries of ∆Qk are:

− λ1 · Ck ≤ ∆Qk ≤ λ2 · Ck (III-B.11)

The upper boundary of |∆Qk| is:

|∆Qk| ≤ max(λ1, λ2) · Ck (III-B.12)

Theorem III.3. The relative error of the ABW estimation can
be bounded; P can be adjusted to achieve a certain relative
error limit.

Proof. Let Ak represent the ABW of the tight link, Âk be the
estimation of ABW, ∆Ak be the estimation error, η = ∆Ak

Ak

which represents the relative estimation error:

Ak = (P −∆Qk)/∆tk (III-B.13)

Âk = P/∆tk (III-B.14)
∆Ak = ∆Qk/∆tk (III-B.15)
η = ∆Qk/(P −∆Qk) (III-B.16)

The relative error can be bounded with Eq. (III-B.11):

− Ck · λ1

P + Ck · λ1
≤ η ≤ Ck · λ2

P − Ck · λ2
(III-B.17)

Given certain relative error limit γ so that |η| ≤ γ, P should
satisfy the below requirement according to Eq. (III-B.16):

P ≥ (1 + γ)/γ · |∆Qk| (III-B.18)

P can be adjusted as below to achieve limit γ according to
Eq. (III-B.12) and Eq. (III-B.18):

P ≥ (1 + γ)/γ ·max(λ1, λ2) · Ck (III-B.19)

In fact, we satisfy the above condition by controlling the
volume of packets in the loading phase since P is larger than
it. Specifically, when max(λ1, λ2) = 0.1ms, Ck = 1Gbps
and γ = 10%, the requirement is P ≥ 137.5KB, so we
send 92 MTU-sized packets in the loading phase; When
max(λ1, λ2) = 1ms and Ck and γ are the same, the
requirement is P ≥ 1.375MB, where we send 917 MTU-
sized packets.

In conclusion, BQR uses Eq. (III-B.4) to compute path
ABW; Eq. (III-B.11) to compute the relative error bound; and
Eq. (III-B.19) to guide the adjustment of the probe budget.

Probe 
Sender

Probe 
Receiver

R2 R4R1

N1

R3 R5

Traffic 1 Traffic 2 Traffic 3 Traffic 4

Link 0 Link 1 Link 2 Link 3 Link 4 Link 5
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Cross trafficProbe packet

Fig. 2: Topology for ns-3 simulation.

TABLE I: Traffic rates of constant/Poisson/Pareto traffic at
Link 3 (40 ms, 100 samples).

Type 10th percentile
(Mbps)

90th percentile
(Mbps)

Mean Rate
(Mbps)

Constant 69.77 70.07 70.00
Poisson 64.18 75.66 69.51
Pareto 0.00 85.58 58.72

TABLE II: BQR ABW estimations, the real ABWs and REs
for three types of traffic.

Traffic ÂT (Mbps) A(Mbps) RE(%)

Constant 29.08 28.59 1.71
Poisson 38.06 37.72 0.90
Pareto 24.69 24.94 1.01

C. Simulation

We use NS3 to verify the theory of the BQR model. Fig. 2
shows the topology for the simulation. Our goal is to measure
the ABW of the path from the probe sender to the probe
receiver consisting of five links and five 1-hop cross traffic.
The capacities are 100 Mbps for links in the path, and are 10
Gbps for the side links. Traffic rates from Links 1 to 5 are 50,
60, 70, 60, 50 Mbps respectively. Link 3 is the tight link.

Three types of cross traffic are tested: constant, Poisson and
Pareto (α = 1.5). Their rate CDFs are shown in Fig. 3a (40
ms granularity). The 10th percentile, 90th percentile and mean
rates at Link 3 are listed in Table I: constant traffic has no
burstiness; Poisson traffic has a little burstiness, 8% bias from
the target for the 10th percentile and 90th percentile; Pareto
traffic is bursty with an average rate of 58.72 Mbps.

To emulate BQR, the sender sends 100 UDP packets (1500
Bytes) at 100 Mbps to induce congestion. After that, another
100 packets are sent at 10 Mbps to observe the OWD variation.

Fig. 3b shows the OWD during the measurement. BQR
locates t1 and t2 in the OWD curves. It estimates the ABW
by Eq. (III-B.4) where ∆t = t2 − t1 and P is the volume of
the packets sent within [t1, t2]. The ground truth of ABW is
calculated as the capacity minus the average cross-traffic rate
in [t1, t2].

The ABW estimations from BQR, the ground-truth ABWs
and the Relative Errors (REs) are shown in Table II, where
RE is ε = |Âk−A|

A ∗100%, A is the ground truth and Âk is the
ABW estimation. In the simulation, the REs for all three types
of traffic are low, i.e., 1.71%, 0.90% and 1.01% respectively.

Fig. 3c, 3d, and 3e illustrate queue length variation over
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Fig. 3: NS3 Simulation Results

time of all congestible links for three types of traffic. The
results of constant and Poisson traffic are close to piecewise
linear. For Pareto, the curve is different. The reason is that the
OWD variation is a linear combination of the queuing delays
of all congestible links.

In summary, queues start to increase during the loading
phase of BQR, and then gradually decrease to the level before
congestion during the inspection phase. For all three types
of traffic, the queue of the tight link, i.e., queue-3 has the
longest recovery time, which determines the recovery time of
the OWD. This is how and why BQR can infer the path ABW
from the OWD precisely, even when the cross traffic is bursty.

IV. DESIGN OF FABMON

In this section, we present the detailed design of FABMon.
Probing mechanism. According to the BQR, FABMon

is deployed on both the measuring and remote nodes. The
measurement starts with a loading phase, where a certain
number of packets (loading train) are sent at rate rl to fill the
queue of the tight link. In the subsequent inspection phase, two
consecutive sets of probe packets (inspection train) are sent to
detect the OWD change: main probes for calculating the exact
ABW of the network path, and auxiliary probes for detecting
the upper and lower bounds of the OWD and determining
whether the network path has recovered from congestion to
a stable state. Algorithm 1 is designed to compute the packet
sending times of the loading and inspection trains. The loading
train has a constant rate with a packet gap of sl

rl
. The main

probes in the inspection phase are a low-rate train. Algorithm 2
computes the sending times of the main probes, with the lower

TABLE III: Symbols in Algorithms 1, 3 and 4

Algorithm 1
nl the packet number of the loading train
sl the packet size of the loading train
rl the sending rate of the loading train
si the packet size of the inspection train
na the packet number of the main probes
nb the packet number of the auxiliary probes
am the lower bound of the ABW
aM the upper bound of the ABW
gm the lower bound of the packet gap of the main probes
gM the upper bound of the packet gap of the main probes
gn the packet gap of the auxiliary probes
ta the planned sending times of all packets
N # of all packets

Algorithm 3
d the OWDs of all packets

tha threshold above which the OWD is unrecovered
thb threshold to determine whether the OWD is not stable
m the number of packets whose OWDs are stable
rec whether the OWD has recovered
thc threshold below which the OWD is recovered

Algorithm 4
tb the actual sending times of all packets
L the lower bound of the recovery time
E the estimation of the recovery time
U the upper bound of the recovery time

recid the smallest index of packet whose OWD is recovered

and upper bounds of the packet gap. It computes the next
sending time and calls itself recursively. The auxiliary probes
have a constant rate with a packet gap of gn, determining
whether the OWD has recovered stably.

Recovery assessment and location. The RecoveryAssess
Algorithm (3) checks whether the OWD has recovered to the
state before the loading train. If recovered, it outputs thc, a
threshold below which the OWD is considered recovered.

The RecoveryLocate Algorithm (4) finds the smallest-index
packet whose OWD is < thc in the main probes. This
packet is considered as recovered and the previous packet is
unrecovered. Function XvalueF(xa, ya, xb, yb, y) in Algorithm
4 gives x so that points (x, y), (xa, ya) and (xb, yb) are
collinear. We use XvalueF to compute the estimation of the
recovery time E so that the unrecovered point (L, d[recid−1]),
the recovered point (U, d[recid]) and the estimation point
(E, thc) are collinear. L and U are the lower and upper
boundaries of the recovery time. They are used to compute
the upper and lower boundaries of the ABW, respectively.

Measurement procedure of FABMon. After arranging the
sending time of each packet as Algorithm 1), the sender
module of FABMon sends the probe packets as planned. Once
the receiver program receives all probe packets, Algorithm 3)
is executed and generate two outputs: rec and thc. If rec is
true, Algorithm 4 is called to output the recovery time E and
boundaries L, U , as well as the recovery index recid. Finally,
the path ABW is estimated based on Eq. (III-B.4):

Â = (nl · sl + recid · si)/E (IV-.1)
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Algorithm 1: Probe Train Design
Input: nl, sl, rl, si, na, nb, am, aM , gm, gM , gn, N
Output: ta

1 ta ← []
/* push_back(array, element) adds

element at the end of array */
2 for (i← 0; i < N ; i← i+ 1) do
3 push back(ta, 0)
4 end
/* Loading phase: constant rate */

5 for (i← 0; i < nl; i← i+ 1) do
6 ta[i]← sl · i/rl
7 end
/* Inspection phase - Main probes:

decreasing rate */
8 P1 ← sl · nl, P2 ← sl · nl + (na − 1) · si
9 ta[nl]← P1/aM , ta[nl + na − 1]← P2/am

10 ArrF(P1, nl, nl + na − 1, aM , am, ta[nl],
ta[nl + na − 1], gm, gM , si, ta)
/* inspection phase - Auxiliary

probes: constant rate */
11 for (i← nl + na; i < N ; i← i+ 1) do
12 ta[i]← ta[i− 1] + gn
13 end
14 return ta

Algorithm 2: ArrangeFunc(ArrF for short)
/* Set the packet sending times of

the main probes. */
1 function ArrF(p, il, ir, al, ar, tl, tr, gm, gM , si, ta)

begin
2 if il + 1 ≥ ir then
3 return
4 q ← (ir − il)/(ir − il + 1),

atemp ← q · al + (1− q) · ar, ttemp ← p/atemp

5 if ttemp < tl + gm then
6 ttemp ← tl + gm
7 else
8 ttemp ← tl + gM
9 ta[il + 1]← ttemp, atemp ← p/ttemp

10 ArrF(p+ si, il + 1, ir, atemp, ar, ttemp, tr, gm,
gM , si, ta)

11 end function

Algorithm 3: RecoveryAssess
Input: d, N , tha, thb, m
Output: rec, thc

1 va ← d[N − 1]− d[0]
2 if va > tha then

/* last is too larger than first */
3 rec← False, thc ← 0
4 else
5 vb ← max

N−m≤i<N
(d[i])− min

N−m≤i<N
(d[i])

6 if vb > thb then
/* OWDs are not stable */

7 rec← False, thc ← 0
8 else

/* OWDs have recovered stably */
9 rec← True, thc ← max

N−m≤i<N
(d[i])

10 end
11 return rec,thc

Algorithm 4: RecoveryLocate
Input: nl, d, N , thc, tb
Output: L, E, U , recid

1 for (recid ← N − 1; recid ≥ nl; recid ← recid − 1) do
2 if d[recid] > thc then
3 Break
4 end
5 recid ← recid + 1, L← tb[recid − 1], U ← tb[recid]
/* XvalueF(xa, ya, xb, yb, y) returns x with

(x, y), (xa, ya), (xb, yb) on one line. */
6 pre← recid − 1
7 E ← XvalueF(tb[pre], d[pre], tb[recid], d[recid], thc)
8 return L,E,U ,recid

V. EXPERIMENTS

A. Testbed and Settings

Testbed. Fig. 4 depicts our testbed of 5 nodes, including a
sender, a receiver and three side nodes. The 5 nodes are all
AMAX servers with the Intel(R) Xeon(R) Silver 4216 CPU
(@2.10GHz) and two NICs (Intel 82599ES 10-Gb and X722
1Gb NICs. The operating systems are Ubuntu 18.04. Three
routers are Huawei S5731-S48T4X with 10Gbps SFP ports
and 10/100/1000BASE-T electrical ports.
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Fig. 4: Testbed topology.

Link 0 and side link 1/2 are 10 GE links. The capacity
of link 1/2/3 can be switched from 10Mbps to 10Gbps. To
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achieve higher timestamping accuracy, the traffic at link 0/3
is physically mirrored to a packet capturer of an Endace Data
Acquisition and Generation (DAG) card, with 4 nanosecond
timing precision. We use Ci to represent the capacity of Link
i, Ti to represent the average rate of cross traffic at Link i
(i ∈ [0, 3]).

Baselines. Four typical open-sourced ABW estimation tools
are used as the baselines: 1) ASSOLO [16], a multi-rate PRM
tool based on pathChirp; 2) PTR [6], a feedback-based PRM
tool; 3) pathload [5], a feedback-based PRM tool; and 4)
Spruce [9], a PGM tool.

Timing Source. As mentioned above, the Linux system
clock may result in inaccurate timestamps. We only care about
the OWD variation instead of the absolute value, thus we
investigate how much the system clock can drift over time.

We deploy FABMon at the measuring/remote nodes and use
the DAG hardware as stable timing sources. We find the clock
deviation between the sender and receiver is at most 700µs
after 100 s. Since FABMon finishes within one second, the
clock skew will be ≈ 7µs, which can be ignored compared
to OWD noises (≈ 10ms). Therefore, the influence from the
system clock deviation can be ignored.

Traffic generators. Two tools are employed to generate
cross traffic, including iPerf3 [25] for generating traffic and
Tcpreplay [26] for replaying real-world traffic traces. iPerf3
generates 500Mbps constant traffic with < 1Mbps error for
95% chance at 1ms granularity, which can be regarded as
accurate and unbiased traffic. As for Tcpreplay, we use DAG to
capture the ground-truth rate, thus do not rely on its accuracy.

B. Parameter Selection

We set C0=10Gbps, C1,2,3=1Gbps, T1,3=0, T2=500Mbps.
Packet size. Fig. 5 shows how packet size sl matters. The

three curves represent the OWDs with sl = 1472, 736, 368B
respectively. Note the sum of the loading packets remains the
same and rl = 1Gbps. We can find that the 1472B curve is
close to the 736B curve, but the 368B curve is different, with
a smaller slope and lower peak. This is caused by the minimum
time cost of Linux syscall, i.e., it takes 6µs to send a packet.
To reach the 1000Mbps rate, the packet size should be at
least 750B. This explains why the sending rate of the 368B
one is lower than the others. As long as the loading phase can
cause congestion, the recovery time remains unchanged, thus
FABMon can still measure ABW correctly. However, larger
packets are suggested to avoid the lower sending rate and
higher CPU load. In practice, we set sl, si=1472B.
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Fig. 5: Effect of packet size on “OWD-time” curves.
The rate and length of loading train. In Fig. 5, the loading

train rate controls the increasing speed and the peak of the
OWD. In practice, we set rl to the path capacity, obtained

from path capacity measurement tools like pathrate [27]. As
for the loading train length, it does not change the shape of the
“OWD-time” curve, but scales it up or down proportionally.
A larger length can reduce the noise influence as discussed
in §III-B. In practice, we use Eq. (IV-.1) to set the length
of the loading train. Though a larger loading train increases
accuracy, it also increases the chance of network congestion
and packet loss. Therefore, we set a maximum limit of 2MB
for one loading phase, no more than the buffer size of most
routers.

FABMon under different traffic burstiness. Fig. 6a, 6b,
6c, 6d, 6e, 6f show how to adjust the parameters of FAB-
Mon for different burstiness of traffic. Note, h represents the
maximum deviation of the OWD caused by the cross traffic,
r represents the ratio of the burstiness period to the stable
period of the OWD caused by the cross traffic. The larger h
is, the more bursty the cross traffic is; the larger r is, the more
frequent the burst happens.
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Fig. 6: Parameter adjustment for different burstiness of traffic

FABMon can handle h ≤ 100µs in Fig. 6a, 6b with
rl=1000Mbps, nl=ni=100, sl=si=1472B, as the OWD peak
reaches 800µs and the OWD noise is around 100µs; when
h=500µs in Fig. 6c, the peak (1200µs) is not clearly dis-
tinguishable from the noise (500µs), thus the recovery time
is hard to estimate. We set nl=1k in Fig. 6d to improve it,
whose peak increases to 7500µs. The REs are 19.42% for
Fig. 6c and 9.50% for Fig. 6d, the latter of which shows a
great improvement. Therefore, larger trains do increase the
measurement accuracy. Next h = 1ms in Fig. 6e and Fig. 6f.
We set nl = 100 in Fig. 6e and nl = 2k in Fig. 6f. The
OWD noises are both 900µs for them; The OWD peaks are
2ms in Fig. 6e and 15ms in Fig. 6f. As a result, the standard
deviation of the estimations in Fig. 6e is 56.14Mbps, larger
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than that in Fig. 6f (4.13Mbps). In conclusion, larger trains
make the estimation more stable too.

Suggestions Table IV summarizes the suggestions and
guidance on parameter selection for FABMon.

TABLE IV: Suggestions and Guidance for FABMon

Parameter Suggestion
nl Set to 100 when max(λ1, λ2) = 100µs and

CT = 1Gbps and γ = 10%
sl, si Set to MTU size (1500B)
rl Set to the path capacity (1Gbps)
ni Set to 100
na 80% inspection packets
nb 20% inspection packets
am 10% path capacity
aM 90% path capacity
gm 20µs
gM 500µs
gn Set to 100µs
tha 100µs. Set to 1 ∼ 2 times the OWD variation range
thb 100µs. Set to the OWD variation range
m Set to nb

VI. EXPERIMENT RESULTS

We demonstrate the performance of FABMon in the follow-
ing aspects: 1) we compare FABMon with other four baselines
in terms of precision, packet overhead and measurement time
in a network with multiple links; 2) we compare their precision
and stability in a network with a variable non-tight-link traffic
load; 3) we test FABMon under real-world traffic.

A. Multiple Links with Traffic Loads

We set the capacities of the four links in Fig. 4 as
C0=10Gbps, C1,2,3=1Gbps. We set Links 1, 2 and 3 with
the same cross traffic load, i.e., T1=T2=T3, from 100Mbps
to 900Mbps, by the step of 100Mbps . Detailed results are
shown in Table V. Each result is the average of 100 repetitions.
The parameters are manually adjusted to achieve the best
performance for each tool.

Relative error. PTR and pathload perform well with small
REs; ASSOLO has large REs; Spruce has the largest REs due
to inaccurate timing and the shortcoming of PGM. On average,
FABMon has the lowest RE, almost one order of magnitude
lower than PTR and pathload, two orders of magnitude lower
than ASSOLO and Spruce.

Packet overhead. According to Table V, FABMon, AS-
SOLO, Spruce have low packet cost below 1MByte. PTR has
variable overhead: lower overhead under lower traffic load and
higher overhead under higher traffic load. Pathload is the tool
with the highest overhead, 11.52MByte on average.

In PTR, the sending rate of the ith train is vi:

vi =
CT

1
2 + i−1

8

, i = 1, 2, 3, · · · (VI-A.1)

where CT is the capacity of the tight link. The sending rate of
the first train is v1 = 2CT . The train number is the smallest
k to satisfy vk < AT where AT is the tight-link ABW.

k = ⌈8CT /AT ⌉ − 3. (VI-A.2)

Therefore, k increases when AT decreases, i.e., the packet
overhead is higher when traffic load is higher.

The packet overhead pattern of PTR is not preferred as
severe congestion or packet loss can be caused by high
overhead under high traffic load.

Measurement time. As Table V shows, ASSOLO measures
fastest with 2ms for each run; FABMon is the second fastest
that takes within 43.2ms; Pathload has the longest measure-
ment time, 4509.9ms on average.

PTR and pathload take more time to measure as they use
multiple probe trains iteratively; Spruce uses packet pairs
with intervals to do a Poisson sampling, so it takes relatively
medium time; ASSOLO employs chirp trains (compressed
multiple trains) with less time, but has higher REs. FABMon
uses one loading train and one inspection train with relatively
less time, meanwhile providing the lowest REs.

Summary. Generally, fast measurement and low overhead
are conflict with high measurement precision. ASSOLO has
high measurement speed and low overhead, but high REs; PTR
and pathload have high measurement precision and stability,
but suffers from slow measurement and high overhead; Spruce
takes medium measurement time and low overhead, but suf-
fers from inaccuracy. FABMon has the highest measurement
precision and stability, and meanwhile is efficient with fast
measurement and low overhead.
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Fig. 7: The Results of REs and deviations

B. Variable Traffic Load at the Non-tight Link

To study the systematic errors of PGM, we use DAG
timestamps to remove the noises caused by inaccurate timing.
DAG can provide nanosecond level timing precision. Traffic
is generated to pass Links 1 and 2. The cross traffic rate at
the tight link is fixed, and the rate at the other link is alter-
able. Links 1/2 is the tight link. T2/T1=0, 100, ..., 500Mbps.
T1/T2=600Mbps and T3=0. Each result is the average of 100
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TABLE V: Relative error, packet overhead and measurement time of 5 tools.

Load (%) FABMon ASSOLO PTR pathload Spruce

RE (%) Time
(ms)

Cost
(MB) RE (%) Time

(ms)
Cost
(MB) RE (%) Time

(ms)
Cost
(MB) RE (%) Time

(ms)
Cost
(MB) RE (%) Time

(ms)
Cost
(MB)

0 0.28 6.5 0.52 18.66 2.0 0.17 3.92 15.5 0.78 2.30 3572.1 9.51 98.04 283.0 0.14
10 0.21 6.2 0.47 22.63 2.0 0.17 4.64 15.7 0.78 6.78 5037.6 13.35 100.00 283.0 0.14
20 0.27 6.0 0.42 19.37 2.0 0.17 3.79 111.3 1.05 9.35 3395.3 9.07 99.92 283.0 0.14
30 0.32 5.7 0.38 35.50 2.0 0.17 1.43 116.8 1.06 4.47 3308.8 8.84 100.00 283.0 0.14
40 0.44 5.6 0.33 30.91 2.0 0.17 1.12 108.7 1.04 3.55 8397.4 22.00 100.00 283.0 0.14
50 0.63 5.8 0.29 31.82 2.0 0.17 0.99 231.3 1.27 2.60 5035.8 13.22 100.00 283.0 0.14
60 0.71 7.3 0.29 60.18 2.0 0.17 0.85 251.7 1.31 3.08 5259.1 13.75 100.00 283.0 0.14
70 0.55 10.0 0.29 45.40 2.0 0.17 4.36 380.4 1.54 5.46 5588.1 13.89 100.00 283.0 0.14
80 0.59 16.0 0.29 10.65 2.0 0.17 6.73 669.5 2.08 8.96 2932.1 6.29 100.00 283.0 0.14
90 0.65 43.2 0.29 145.73 2.0 0.17 13.34 2064.9 4.69 79.53 2572.5 5.24 100.00 283.0 0.14
avg 0.47 11.2 0.36 42.08 2.0 0.17 4.12 396.6 1.56 12.61 4509.9 11.52 99.80 283.0 0.14

repetitions to avoid randomness. In Fig. 7, t1 or t2 means Link
1 or Link 2 is set as the tight link. FAB, path and ASS are
short for FABMon, pathload, ASSOLO, respectively.

As Fig. 7a shows, FABMon and pathload have low REs.
ASSOLO and PTR have medium REs of 20%−60% in Fig. 7b.
As shown in Fig. 7c, Spruce has high REs, increasing as the
traffic load increase. Spruce is also influenced by the location
of the tight link that the REs are higher when Link 2 is the
tight link than when Link 1 is.

The standard deviations of 100 repetitions are shown in
Fig. 7d. FABMon and pathload are most stable.

We have two significant conclusions. First, packet pairs
are not as reliable as packet trains. Packet delays between
applications to the NICs and random noises from context
switch or timing sources are inevitable. The influence of noises
can be reduced by a number of packets, while it can not
be eliminated with packet pairs. Second, PGM is good at
scenarios where the traffic rates at other links are all lower
compared to the traffic rate at the tight link. In other words,
the errors of PGM increase when the path contains multiple
links whose traffic rates are close to the tight link traffic rate.
Therefore, ABW estimation tools should use packet trains as
probes; PGM tools should be cautiously used only in the
scenarios with one single heavy-load tight link.

TABLE VI: Dataset information.

Metric bigFlows1.pcap caida2.pcap

Duration (s) 300 50
Average Rate (Mbps) 9.47 4301.75

Average Packet Size (B) 451.11 912.99
Packet Numer 786K 29M

C. Real-world Traffic

So far, we have evaluated FABMon with constant back-
ground traffic of MTU-sized UDP packets generated by iPerf3.
However, real-world traffic consists of variable-size packets
and is bursty. Thus, we further evaluate FABMon with real
traffic traces (Table VI) replayed by Tcpreplay [26].

1) The BigFlows trace [28]. It is a 5-minute trace of real
network traffic on a busy private network’s access point
to the Internet. It contains traffic of 132 applications.

2) The CAIDA trace [24]. It traces traffic from São Paulo to
an Equinix datacenter in New York. They use Endace 6.2
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Fig. 8: Second level estimation.

DAG cards to record the traffic in bi-directional backbone
links. The original pcap file includes 0.93% IPv6 packets,
which are removed in our experiment.

Fig. 8a shows the CDF of packet sizes for the two traces.
The BigFlows trace contains more small packets than the
CAIDA trace. Fig. 8b shows that the relative errors from the
average rate for the bigFlows trace are evenly distributed from
−80% to +100% even in 1 s granularity. Relative errors for
the CAIDA trace is similar, with a narrower range from −20%
to +20% in 100ms granularity, and from −10% to +10% in
1 s granularity.

We use Tcpreplay to reproduce the traffic at certain average
rates. We replay each pcap file as follows: Node N1 sends the
traffic at a certain average rate to the probe receiver iteratively.
At the first iteration the average rate is v1=100Mbps for
10 seconds; At the second iteration, the average rate is
v2=200Mbps for 10 seconds. We increase the average rate
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step by step until the 8th iteration, v8=800Mbps. The total
process lasts for 80 seconds. At the same time, FABMon is
running at the probe sender and receiver to measure ABW.
FABMon takes 50ms for one measurement, and we set the
interval between measurements to be 40ms. Thus, FABMon
measures every 90ms. We set Ci=1Gbps, i=0, 1, 2, 3 during
this experiment.

We capture the cross traffic with the DAG card to compute
the ground truth. Note that the real traffic rate is not constant.
Therefore, we cluster the cross traffic collected by the DAG
card every second and average the results given by FABMon
every second too.

Experiment results are shown in Fig. ?? and Fig. 8d. The
red curve is the prediction of FABMon and the blue curve is
the ground truth. Both figures show that, as the cross traffic
rate varies, FABMon quickly updates the measurement results
to the new value. In general, FABMon predicts ABW close
to the ground truth, and the error is smaller when the cross
traffic is more constant (like in the CAIDA dataset).

VII. CONCLUSION

In this paper, we proposed a novel ABW estimation model
named BQR, aiming to cut down the measurement time,
achieve high precision and apply to scenarios with multiple
congestible links and non-constant traffic. We developed FAB-
Mon based on BQR. The testbed experiments show that FAB-
Mon outperforms other ABW estimation tools with faster mea-
surement speed, higher accuracy, lower overhead. Meanwhile,
it shows robustness under scenarios with multiple congestible
links and variable real-world traffic. In the future, we will
explore how to adapt the BQR model to diverse scenarios,
including high-speed data centers, wide area networks with
different RTTs and throughputs, etc.
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