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Abstract—This paper proposes MousePath, a novel lightweight
communication system between PC web pages and smartphones.
MousePath works by putting the optical mouse on top of the
smartphone’s screen, then its transmission starts and is instantly
finished without association and pairing friction. It encodes data
into the movement of smartphone’s display content and leverages
the optical mouse of the computer to sense the movement
for decoding the data. We prototype and evaluate the system
with commercial computers and smartphones. A key benefit of
MousePath is that it can be seamlessly integrated into web pages.
Two representative web applications, i.e., sensor sharing and mes-
sage sharing, have been developed to demonstrate MousePath’s
potential in enhancing PC web page functionalities.

Index Terms—Cross Device Information Sharing; Optical
Mouse; Visible Light Communication

I. INTRODUCTION

The Web is progressively evolving. Traditional web pages
primarily serve as an output interface for users to retrieve
information from a remote server, while recent web pages also
try to retrieve client-side information to enrich its functionali-
ties. For instance, Media Capture and Streams API [1] enables
web VoIP through accessing microphones and cameras.

Motivated by the popularity of smartphones, this paper
considers a question following the above trend: can PC web
pages, i.e., web pages accessed via a desktop or a laptop, be
further enhanced by taking information from co-located smart-
phones? A positive answer would lead to several interesting
and beneficial web applications. For example, it will allow the
PC web page to retrieve the account and password credentials
stored in the smartphone for the auto-filling in of the login
session. Another example is sensor sharing. Smartphones are
rich in various sensing capabilities. Unique ones can be made
use of by PC web pages. Below are a few examples. Accessing
the localization sensors of the smartphone enables precise
location-based services (LBS) on PC web pages. Through light
sensors, the online photo editor can auto-tune its color space to
fit the ambient light condition. Further, accessing the heartrate
sensor is helpful for remote health diagnosis.

When putting the above idea into practice, a data connection
between the smartphone and the PC web page must be
established. However, this is surprisingly challenging. There
are already mature solutions for sharing information between
smartphones and PCs, such as the Your Phone App in Window
10 and the General Clipboard in Apple products. They all
target phone-to-PC sharing rather than phone-to-web sharing.
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Fig. 1. Overview of MousePath. MousePath consists of two major entities.
The MousePath transmitter app in the smartphone and the MousePath receiver
script embedded in the web page. The MousePath transmitter gathers informa-
tion in the smartphone, like account credentials and sensor data, and transfer
them to the MousePath receiver to enable new web functionalities, e.g.,
enabling Precise Location-based Service, and facilitating Password Managers.

In situations where the web page already provides suitable
input interfaces, such as text box and image drop area, the
two concepts are close. However, when the web page requires
verbose input such as location attitudes and raw sensor sam-
ples, there is a gap between the two concepts. The phone-
to-PC sharing brings only information to the PC’s operating
system, thus additional effort, i.e., installing a browser plugin,
is needed to further convey the information to the web page.
This, however cancels out the major benefits of using a web
application - the simplicity of no installation or management
efforts being required.

In this paper, we propose MousePath, a lightweight and
ubiquitous way to realize phone-to-web sharing. As shown
in Figure 1, it works by putting an optical mouse on top
of a smartphone screen, and then the information from the
smartphone is directly transferred to the web application.

MousePath transfers data through a novel channel lying
between the smartphone screen and the PC’s optical mouse.
The key insight is to make use of the motion sensing ability of
optical mice. We observe that, when putting it on the screen
of the smartphone, the optical mouse has the capability of
sensing the movements of the display content. Based on this
property, the MousePath transmitter in the smartphone encodes
the data into the movements of the display content, which fools
the optical mouse into treating the content movement as real
physical movement. As a result, the MousePath receiver, e.g.,
a piece of JavaScript in the web page, can infer the movements
of the display content from the system’s mouse trajectories,
through which the data can be decoded. The above scheme
represents a special screen-to-mouse communication channel.
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Although we have not noticed any other phone-to-web
sharing systems, MousePath is not the only way to achieve
this. For example, by using the latest Media Capture and
Streams API [1], and compatible browsers, web pages can
access the camera to capture a QR code stream on the
smartphone to achieve similar functionalities. In MousePath,
the optical mouse is like a camera and the moving display
content of the smartphone is like the QR code. MousePath is
superior over the camera-based method in API compatibility,
hardware availability, and visual privacy.

Compared with potential ad-hoc radio-based approaches,
such as Bluetooth, MousePath has the following advan-
tages. First, MousePath is pairing-free. Similar to near-field-
communications (NFC), the communication entities identify
each other through physical proximity, i.e., just put the mouse
on top of the phone, with no other user burden. This feature
is particularly useful when using it with public PCs, where
pairing raises privacy concerns and might not even be allowed.
Second, MousePath implies benefits in security. The physical
proximity largely eliminates wireless sniffing [2], hence the
user can place more trust in the channel, e.g., to transfer
the credentials. Further, as a single-way channel, MousePath
provides strong isolation to protect phones against malicious
PCs (e.g., in public places) [3].

Our contributions are:
• We propose a novel lightweight screen-to-mouse commu-

nication channel by leveraging screens for transmitting and
optical mice for receiving. To our knowledge, there are no
similar methods which utilize the original sensing ability of
optical mice for communication.

• We implement a prototype system of MousePath and evalu-
ate it with various commodity optical mice and smartphones.
The receiver is written in Javascript and can be embedded
into web pages and run with unmodified web browsers.

• We demonstrate MousePath with two web applications.
MousePath enables precise location-based services for PC
web pages and also shows the advantage to integrate with
password managers.

II. RELATED WORK

Screen-to-camera Channel. Since the optical mouse sensor
is actually an image sensor, MousePath is related to the
area of screen-to-camera communication. At a high level,
the approaches encode information in the display content
of the screen, and use a camera to capture the screen and
decode the information. The basic example is scanning QR-
codes. Recent efforts in screen-to-camera research improve the
performance in various aspects, including the data rate [4],
computation overhead [5], etc. Unlike the aforementioned, the
screen-to-mouse channel leveraged in this paper has not been
investigated before. Specifically, since the optical mouse by
default only provides movement information, MousePath de-
codes messages from the mouse’s moving trajectories instead
of from images. Further, MousePath encodes messages by
slightly shifting the same display pattern in consecutive display
frames instead of modifying the display content.
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Fig. 2. Optical Mouse Uses Image Sensor to Detect Movement. For example,
when the mouse is moved leftwards, the mouse DSP detects the movement
according to the rightward movement of the texture “A” in the captured
images. The mouse reports its observation via movement vectors showing
negative X values, i.e., the leftward direction in the mouse’s local coordinate
system.

Enhancing Desktop with Smartphones. There is a long
history of researchers combining smartphones and desktops.
The Pebbles project [6] makes use of a touch-screen PDA to
display the user interface of desktop applications, providing an
additional display and control interface. Similar approaches
are discussed under the context of data sharing [7], math
equation editing [8], and so on. Moreover, smartphones are
explored as a trusted computing device to improve the security
of desktop computers [9]. All of these works assume there
is a network connection between the smartphone and the
desktop, but ignore the practical overheads in establishing and
maintaining the connection. MousePath provides a ubiquitous
and convenient way to transfer data from a smartphone to a
desktop.

III. BACKGROUND

This section provides the background knowledge of the
techniques used in MousePath.

A. Optical Mouse

A mouse is a major way for computer users to interact with
the Graphical User Interface (GUI) system. A mouse works
by continuously tracking its relative movement on the working
surface. The GUI system scales movement values and updates
the cursor location which allows the user to control the cursor
to point, select, and drag virtual objects on the screen.

An optical mouse is a kind of optical imaging system
(Figure 2). It uses a backlight (LED or laser) to illuminate
the working surface. The image sensor, which is actually a
low resolution but high frame rate CMOS sensor, continuously
takes images of the working surface at a rate of thousands of
frames per second. When the mouse is moved, the images
change as the textures of the captured working surface also
change (see the anchor character “A” in Figure 2 for example).
The sampling rate of the image sensor is so high that sequential
images tend to partially overlap. Thus, the Digital Signal
Processing (DSP) unit of the optical mouse can make use of
the overlapped images to compute the direction and distance
of the movement [10].

The DSP quantifies the movements to movement vectors
~M(ti) = [MX(ti),MY (ti)], which represent the accumulated

displacement along the X-axis and Y-axis of a mouse’s local
coordinate system from time ti−1 to time ti. Note integration
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Fig. 3. Optical Mouse Can Detect the Movement of the Display Content of
the Underlying Screen. The optical mouse and smartphone are put together
as shown in Figure 1. Subfigure (a) is the texture shown on phone’s screen.
When the texture is shifted in clockwise order and the mouse is not physically
moved, movement vectors reported by the optical mouse are shown in (b).
The dots and lines indicate that the movement of the display content can be
correctly detected by the optical mouse.

of on ~M(ti) gives the trajectory of the movements, thus ~M(ti)
are reported to the host system for GUI control. Although,
in principle, the DSP can generate one ~M(ti) for every
two sequential images, the default reporting/sampling rate of
~M(ti) is fixed at 125 Hz in normal optical mice.

1) Idea of Screen-to-Mouse Channel: MousePath enables
a generic and ubiquitous communication channel between
public computers and smartphones. Its approach is based on
the following observation; besides the reflected backlight, the
image sensor of the optical mouse can also capture other
light signals. Specifically, when the optical mouse is put on a
screen, it is possible to capture the display content.

Motivated by the above observation, an interesting question
is, will the optical mouse report movements if the underlying
display content moves virtually but the mouse itself is not
moving? Figure 3 answers this question through a simple
experiment. An optical mouse is put on the screen of a
smartphone as seen in Figure 1. The overlapped area of the
screen displays a texture as shown in Figure 3(a), which covers
the sensing area of the optical mouse Each time when the
phone’s display updates (typically 60 Hz), the texture is shifted
by 2 pixels to one of the four directions in clockwise order,
i.e., up-right-down-left-up. The reported motion vectors ~M(ti)
are plotted in Figure 3(b). Sequential vectors are connected by
lines. The dots and lines in Figure 3(b) form a circle coinciding
with the clockwise shift/movement of the texture, indicating a
positive answer to the question.

The above observation and validation imply an untapped
opportunity in transferring data from the smartphone to the
computer by fooling the optical mice with the movement of
the smartphone’s display content. Specifically, the data can be
encoded in the shift directions of the texture. At the same
time, the optical mouse can identify the shift directions, and
report to its host system with movement vectors. Applications
in the host system can then decode the data encoded by the
smartphone through analyzing the movement vectors.

B. MousePath Overview

The overview of the MousePath system is shown in Fig-
ure 1. It consists of two major entities, the MousePath trans-
mitter app and the MousePath receiver web script.

The MousePath transmitter is an app running in the user’s
smartphone (Section IV-A). The app displays a tx-texture on
its GUI and shifts it to stimulate the optical mouse to generate

movement vectors. The shift directions and distance are chosen
according to the modulation method and the data bits. The app
is also responsible for managing the data to be transmitted, for
example, the login credentials, data from sensors, and the like.

The MousePath receiver is a web script offered by the
webserver and running in the web browser on the PC. The core
part of MousePath receiver is the decoder (Section IV-B). The
decoder routine obtains movement vectors from the system’s
mouse interface and decodes them to obtain the bit stream
transmitted by the MousePath transmitter.

IV. SCREEN-TO-MOUSE CHANNEL

This section extends the idea in Section III-A to realize a
reliable screen-to-mouse channel. This special communication
channel, which has not been studied before, contains unique
challenges rooted from both the smartphone’s display system
and the optical mouse’s imaging system. We address them with
the transmitter and receiver design.

A. Transmitter Design

This subsection describes the modulation, synchronization,
channel coding designs used in the MousePath transmitter.

1) Modulation: The movement of the texture in the
MousePath transmitter app can stimulate the reaction of the
optical mouse sensor. The displayed texture, called tx-texture,
and its movements determine the intensity of the reaction,
i.e., the amplitude of the movement vector ~M(ti), and thus
affect the quality of the channel. Therefore, the design goal
of tx-texture and its movement pattern is to maximize the
amplitude of the mouse movement vectors while avoiding
possible movement ambiguities. There are two properties
complicating the problem.

First, optical mice have a maximum detectable moving
speed, which is related to the sampling rate of the image
sensor. Recall that the mouse DSP measures movements
by comparing consecutive images, hence the displacement
between two images should not be too large, otherwise the
consecutive images will differ too much to correctly judge the
displacement. The maximum moving speed of evaluated mice
is limited to 30 inches per second [11]. As the image sensor
samples 3000 images per second, the maximum displacement
of the underlying texture between two sequential mouse im-
ages should not exceed 30/3000 = 0.01 in, which is equal to
the width of 4 pixels of the screen (400 pixels per inch).

The movement emulated by the tx-texture is quite different
from the real physical movement. As the screen refresh rate
(60 Hz) is much slower than the mouse’s sampling rate
(3000 Hz), from the perspective of the optical mouse sensor,
its images are identical most of the time. As a result, the
maximum shifts of the tx-texture is determined by the two
images encountering the screen refresh rather than all images
during the 1/60 s. Therefore, the shift distance of the tx-texture
in two sequential display frames should be within 4 pixels.

Second, the mouse’s imaging system can only cover an
area of 0.04 in × 0.04 in of the working surface [11]. When
the mouse is placed on the phone’s screen (the pixel density
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is about 400 pixels per inch). The optical mouse judges the
movements according to an area of 16 pixels ×16 pixels of
the tx-texture.

The above properties indicate that, in order to uniquely
determine the shift direction, for any 16 pixels ×16 pixels
area in the tx-texture, there should be no neighboring areas
within 4 pixels that are identical or similar. We generate tx-
texture based on this constraint. In addition, we use black and
white textures to increase the contrast for the image sensor
(see examples in Figure 3(a)).

Similar to the modulation methods in other communication
systems [12], both the shift direction and shift distance of
the tx-texture can be used to represent bits. However, as the
channel contains large noise, we fix the shift distance and only
modulate the shift directions. We call the scheme Direction
Shift Keying (DSK). Table I shows one possible mapping,
which uses four shift directions as symbols (→, ↓,←, ↑) to
represent bits. The symbol “•” represents no shift for the
display frame, which is mainly used in the preamble.

TABLE I
MODULATION: DIRECTION SHIFT KEYING

Bits 00 01 10 11 null
Symbol ↓ ← → ↑ •

2) Preamble: Each packet has a preamble, which is used
to identify the beginning of a packet. The preamble can
also be used to find the rough boundary of symbols. We
use synchronization in Section IV-B to determine the fine
boundary. Specifically, the preamble uses the following symbol
sequences:

←← •• →→ ••

3) Increasing Reliability with Channel Coding: Despite
the adoption of conservative modulation schemes, in practice,
the bit error rate is still much higher than the theoretical
expectation. The reason is partially analyzed in the previous
modulation scheme. The optical mouse judges texture move-
ment according to images taken when display frames switch.
However, if the image sensor samples at the transition stage
of two display frames, they may capture unstable frames [13].
In such cases, the image sensor might report inaccurate or
even the wrong direction, corrupting that symbol. To increase
the successful delivery rate of messages under such harsh
conditions, we use Reed-Solomon (RS) codes [14] for forward
error correction. Each packet consists of a preamble and
payload field. The payload is first coded to RS-blocks and then
mapped to direction shift symbols for transmission. CRC-16
is used to detect errors in each RS-block.

B. Receiver Design

This subsection first characterizes the receiving properties of
the optical mouse, then describes how the MousePath receiver
decodes information from movement vectors.

1) Receiving Properties of the Optical Mouse: Figure 4
demonstrates an example of received movement vectors. Ac-
cording to Section III, the mouse should only report movement
when the display frame refreshes. However, as shown in

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

↓ ↑ ↓ →

↓

← ↓

↑ → ← ↓

→

→

1/Fpolling

1/Fframe

Screen

Mouse ↓ ↓ ↑ ↓ → ← ↓ ↓↑

Fig. 4. Sampling Offset and Noise Exist in Received Movement Vectors. The
screen refresh rate (Fframe = 60 Hz) and the mouse reporting rate (Fpolling =
125 Hz) are different, bringing in a large sampling offset (see movement
vectors reported at Slots 3 and 14). The movement vectors also contain noise
or even wrong values (see Slot 7).

-5

0 5 10 15 
Sampling Time mod Tframe (ms)

0

5

A
m

pl
itu

de

Samples 
topt

-5

0 5 10 15 
Sampling Time mod Tframe (ms)

0

5

A
m

pl
itu

de

Samples 
topt

(a) (b)
Fig. 5. Determine the Optimal Sampling Time. Dots in the figure are
amplitudes of the X movement vectors folded in one refresh cycle Tframe, i.e.,
[x,y] = [ti mod Tframe, MX(ti)]. As the mouse reports every 8 ms, samples
in the range [topt−4ms, topt +4ms] mod Tframe are the most desirable, which
are less noisy than the others. (a) Samples from mouse DELL MO56UOA.
(b) Samples from mouse DELL MS111.

Figure 4, in Slot 2, 4, 6, even though the screen is static
during the sampling period, the mouse still reports non-static
movement vectors. This is probably due to the smoothing
function of the mouse’s DSP, i.e., the mouse reports movement
consistent with the previous sampling period. Due to this
reason, the first samples reported by the mouse after the screen
refreshes are usually more accurate.

2) Preamble Detection: The receiver continuously cor-
relates the receiving movement vectors with the preamble
sequence. A preamble is detected if the correlation energy is
higher than a threshold. Then, the receiver obtains the rough
start of the data symbols and is ready for fine-tuning the re-
sampling time.

3) Re-sampling at the Optimal Sampling Time: Since for
each screen refresh, the first reporting event is more accurate,
we want to identify them for decoding. However, as the screen
and the mouse are not synchronized, the receiver does not
know the exact time the screen refreshes.

We infer the screen refresh time by observing the statistics
of the reported amplitude. When the reporting event is the first
one after the screen refresh, its amplitude is usually large, e.g.,
above 4 or below −4, where positives and negatives indicate
the direction; when the reporting event is not the first one, its
amplitude is usually smaller, e.g., between −2 and 2.

We take advantage of the eye diagram [15] to show this
effect. Figure 5 is the eye diagram of the X movement vectors,
which collectively shows vectors reported by the mouse of
a certain period by folding their sampling timestamps into
[0, Tframe]. We can search within this range to find the value
topt where samples in [topt−4ms, topt+4ms] have a relatively
larger amplitude. This is because topt reflects the time at which
the screen refreshes. We choose samples close to topt mod
Tframe for demodulation.
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Fig. 6. Demodulation of Direction-shift Keying. The receiver maps the
movement directions into bits. The direction is determined by the polarity and
amplitude of the movement vector ~M = [MX ,MY ]. The visual illustration
is shown in (a), which divides the 2D space into four regions. The lookup
table is shown in (b).

4) Demodulation: The demodulation is an inverse process
of modulation. The movement vectors are mapped to bits
according to Figure 6(b). As the directions of the reported
movement vectors are opposite to the shift direction of tx-
texture, Table I and Figure 6(b) are opposite. Note that the
orientation of the phone and the mouse might not be accurately
aligned, and we evaluate how the misalignment angle affects
the decoding performance in Section VI.

V. IMPLEMENTATION

We first give two examples to show how MousePath can be
used in practice, then describe the implementation details.

A. MousePath Enabled Applications

To demonstrate the potential of applying MousePath to
enhance PC web page functionalities, we implement two web
applications shown in Figure 7 and described below.

1) Precise Location-based Service (LBS): When using web
maps, online shopping, etc., precise location allows for a better
user experience, e.g., auto-filling the shipping address and
recommendation of nearby coupon events. However, common
indoor PCs lack dedicated localization sensors. They mainly
rely on IP addresses to determine coarse-grained locations at
the building or street-block level (GeoIP). In regions relying on
NATs for Internet access, location errors can span to hundreds
of meters. On the contrary, the localization approaches of
today’s smartphones are more diverse and accurate. When GPS
is not available indoors, many of its attributes like the locations
of cellular base stations and Wi-Fi access points can be taken
advantage of [16]. Smartphones supporting Wi-Fi RTT [17]
can even be localized at the room level. MousePath enables
precise LBS for PC web pages by retrieving the location
information from co-located smartphones.

2) Password Manager Companion: Today’s web passwords
are complicated and are a burden for people to remember. One
popular mitigating way is to store credentials in one place,
such as password managers [18], which lock passwords in a
USB dongle or cloud and do auto-filling via a simple click or
copy-pasting action. However, it is not always convenient to
use password managers across devices. For example, in public
PCs, such as consoles in libraries, the USB interface is usually
blocked and the login process to the cloud is subject to the risk
of leaking the master key of the manager. MousePath allows

Location

ShareShare

(a) (b)

Positioning

Fig. 7. MousePath-enabled Web Applications. (a) Precise LBS: PCs lack
precise localization sensors, whereas smartphones do not. MousePath enables
precise LBS on PC web pages through retrieving the location information
from a co-located smartphone. (b) Password Manager Companion. The login
credentials stored in the smartphone are shared to the web page for auto-
filling.

the web page to retrieve credentials stored in the smartphone
without the above limitations1.

B. MousePath Transmitter

The MousePath transmitter app calls the C++ Reed-
Solomon library through Java Native Interface (JNI) for data
encoding. The Galois field GF (26) is used in Reed-Solomon
coding. In order to modulate the movement vectors, the
MousePath transmitter app displays a 500 × 500 pixels tx-
texture on the screen. The tx-texture is updated 60 times per
second. An example of the MousePath transmitter app UI is
shown in Figure 8(b). The location data or the password are
encoded in the tx-texture. Then the user can put a mouse on
top of the tx-texture to start the data transmission.

In Android, the display pipeline is synchronized by the
VSync signal. When the VSync comes, the UI will display
the previous frame if the rendering of the current frame has
not been finished. This phenomenon is called Jank [19]. To
avoid Jank, the transmitter app uses the GPU instead of the
CPU for rendering, and binds the tx-texture to the GPU texture
cache. This ensures that the rendering latency is within 16 ms.

C. MousePath Receiver

The MousePath receiver hardware includes an optical
mouse and a PC. We implement the MousePath receiver
as a Javascript application so that it can be embedded into
web pages. The MousePath receiver uses the Mouse Lock
API [20] to constrain the target mouse cursor within an
HTML widget to prevent the cursor from going past the
boundary of the window. The MousePath receiver captures
and demodulates the movement vectors from the mousemove
events. Then the MousePath receiver uses the JavaScript Reed-
Solomon library for error correction. As shown in Figure 8(c),
the script can successfully decode the information.

VI. EVALUATION

In this section, we present the evaluation results. We eval-
uate the performance of MousePath from the communication
aspect and its effectiveness in the two web applications.

1Note that the path to the PC can be further secured through encrypting
the MousePath channel with a one-time key, e.g., sent from the web server
to the smartphone through Short Message Service (SMS).
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(a) (b) (c)

Fig. 8. Implementation of MousePath. (a) Putting the mouse on the smart-
phone to use it. (b) UI for location sharing. (c) The example output from the
browser’s console, showing movement vectors and timestamps.

A. Evaluation of Communication Performance

1) Texture-related factors: We first evaluate how the
texture-related parameters affect the MousePath performance.
We mainly focus on the following three parameters: First, the
movement distance of the tx-texture in consecutive frames,
which is called shift step s. Second, the size of the minimum
color blocks in the tx-texture, which is called texture granu-
larity g. Third, the angle between the mouse and the tx-texture
when the mouse is placed on the tx-texture. By default, we use
a Xiaomi Mix 2S smartphone as the transmitter and a Logitech
M100 optical mouse as the receiver. We test these parameters
using the symbol error rate (SER) as the metric. Each SER
value is calculated over 10, 000 symbols.

First, we evaluate the MousePath with different combina-
tions of shift step s and texture granularity g. The texture we
use is a randomly generated one. Figure 9(a) shows the average
SER for s from 1 pixel to 4 pixels and g from 2×2 pixels to
4×4 pixels. In all these cases, the SERs first decrease and then
increase. As mentioned in Section IV-A, the maximum value
of s should be less than 4 pixels. From Figure 9(a), we can
see that 2 and 3 pixels are the most suitable values for s as
1 pixel is too small to trigger the movement. Similar to s, a
large or small g is not good for the performance. Therefore,
we set s to be 2 pixels and g to be 3×3 pixels as the default
parameters in MousePath.

Next, we evaluate the impact of angle alignment. We define
the correct usage of the MousePath as being to put the mouse
on top of the screen and parallel to the short edge of the
screen, as shown in Figure 8(a). However, in practice, there
may be an angle between the tx-texture and the image sensor.
Figure 9(b) plots the CDF of SER versus the angle. When the
angle increases, the performance becomes worse. When the
angle is 20◦ or above, moving upward can easily be interpreted
as moving leftward or rightward, and thus the SER is high;
when the angle is 10◦ or less, with a high probability the SER
is less than 10%. According to our experience, when the user
places the mouse, the angle is usually within 10◦.

2) Device-related Factors: In this part, we evaluate the per-
formance of MousePath on different smartphones and mouse
models. We choose Xiaomi Mix 2S (with an LCD screen),
Xiaomi 8 (with an OLED screen) and Huawei Mate 20 (with
an LCD screen). For the optical mouse, we choose DELL

TABLE II
LOCALIZATION ERROR W/ AND W/O MOUSEPATH

Localization Localization Error (m)
Method Dormitory Canteen Library Laboratory
IP Based 291 365 433 380

Smartphone’s Built-in 42 19 5 11

MS111, DELL MO56UOA and Logitech M100 as the receiver.
Figure 9(c) plots the CDF of SER for different smartphone-
mouse combinations. The performance of the optical mouse
is different, as different models have different sensitivities in
their detecting algorithm. From Figure 9(c), we can see that the
model with the best performance on Xiaomi Mix 2S is DELL
MS111. Figure 9(c) also shows the impact of different screens.
We notice that the performance difference between LCD and
OLED is not obvious. Besides, the Xiaomi smartphone has
better performance than Huawei, because the screen refresh
rate is not stable in the Huawei model.

B. Evaluation of MousePath Enabled Applications

This subsection evaluates how effective applying MousePath
is to enhance the two web applications.

Application I: Precise Location-based Service. In the
transmitter app, we extract the location estimation of the
smartphone through the Android location API and share it to
the PC web page through MousePath. By default, the PC web
page uses the Geo-IP database [21] for getting the estimated
location. We sample locations in different places and compare
the accuracy of the two approaches in Table II. In all the
locations, IP-based localization is not accurate. This is because
the resolution of the Geo-IP database in our area is blurred
by NAT. On the contrary, the location obtained from the
smartphone is more accurate since it uses information from,
e.g., the locations of observable base stations.

Application II: Password Manager Companion. With
MousePath, a smartphone can share passwords to the PC web
page by coding the information in tx-texture. We measure the
delay of transmitting a password of 20 bytes and compare
MousePath with other network technologies. The overall delay
includes the device pairing delay, the user interaction delay,
and the data transmission delay. Device pairing delay is the
time required to set up a connection between the smartphone
and the PC. Interaction delay is the time users spend on
interacting with the two devices. The transmission delay is
the time required for data transmission.

The detailed setup is: For Bluetooth Low Energy (BLE), we
use the built-in Bluetooth interface in the smartphone and the
PC. For Local Area Network (LAN), we use the third-party
software KDE Connect. For Wi-Fi, we choose SHAREit.
The PC acts as a Wi-Fi access point and the smartphone
connects to the PC as a client. For MousePath, sharing the
password does not require device pairing. The interaction
includes selecting MousePath as the sharing interface in the
mobile app and placing the mouse on the screen. We note due
to the low bit rate, its transmission delay is greater than other
wireless technologies. For each test, the results are averaged
over 10 measurements by three participants (P1, P2, P3). All

2021 IEEE International Conference on Pervasive Computing and Communications (PerCom)

185



1 42 3 
0.05

0.15

0.25

0.35
0.45
0.55
0.65
0.75

Sy
m

bo
l E

rr
or

 R
at

e
Granularity (g) = 2    2 pixels
Granularity (g) = 3  3 pixels
Granularity (g) = 4  4 pixels

Shift Step s (pixel)

(a) Shift Step and Texture Granu-
larity

0 0.1 0.2 0.3 0.4
Symbol Error Rate

0

0.2

0.4

0.6

0.8

1

C
D

F

Angle Error = 0°
Angle Error = 10°
Angle Error = 20°
Angle Error = 30°

(b) Bearing Angle Error

0 0.20.05 0.1 0.15 
Symbol Error Rate

0

0.2

0.4

0.6

0.8

1

C
D

F

Xiaomi OLED 
Huawei LCD 
DELL MS111 
Logitech M100 
DELL MO56UOA

(c) Different Screens and Mice
Fig. 9. Error Rate v.s. Different Configurations.

5 

0

40 

35 

30 

25 

20 

15 

10

P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

O
ne

-O
ff

 M
es

sa
ge

 D
el

ay
 (s

)

  Bluetooth  LAN  Wi-Fi         MousePath

Pairing Delay        Interaction Delay         Transmission Delay
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of 20 bytes to PC when using different approaches.

participants are experienced in using PCs. Figure 10 shows
that the delays with Bluetooth, LAN and Wi-Fi are mainly
caused by the device pairing. Although MousePath has a larger
transmission delay, the total delay is less.

VII. DISCUSSION

Potential Extensions. MousePath implies interesting se-
curity properties worth further exploration. For example,
MousePath can be used to establish a secure user input system
for public computers. The user could use the keyboard of
his/her personal smartphone to do the input for the application
via MousePath. This is without worrying about the risk of
input leakage even when the underlying computer system is
fully compromised. The key challenge is how to establish a
trusted data path between the smartphone and the application.
We plan to combine trusted computing technologies with
MousePath to achieve this goal.

Mouse Sensitivity. In practice, we found that there are
optical mice that cannot respond to texture shifts in the
smartphone’s screen, and thus cannot be used in MousePath.
This is because of many aspects, including the intensity of the
backlight, the focal length of the mouse lens, the movement
detection algorithms in DSP, etc. To use these mice, the user
might need smartphones with a thinner and brighter screen.
Another possible solution is on the mouse side. The optical
mouse can actually report sampled raw images [22], thus the
texture can be directly used for conveying data like a QR code.
We plan to explore this property to improve the compatibility
of MousePath in future work.

VIII. CONCLUSION

This paper presents MousePath, which is a lightweight
communication channel between smartphones and computers.
MousePath makes use of a smartphone’s screen as the trans-
mitter and an optical mouse as the receiver. It fills the gap
of device-to-web information sharing. We envision that it can
enable a lot of interesting web applications.
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