
Demo: Using Smartphone and Optical Mouse to
Enhance Web Interaction

Zhiwei Wang∗†, Yihui Yan∗†, Qianyi Huang‡, Haitian Ren†, Yizhou Zhang†, Zhice Yang†
†School of Information Science and Technology, ShanghaiTech University

‡Southern University of Science and Technology, and Peng Cheng Laboratory
†{wangzhw, yanyh, renht, zhangyzh, yangzhc}@shanghaitech.edu.cn, ‡huangqy@sustech.edu.cn

*Co-primary

Abstract—This demo shows example applications of the
MousePath system–a novel approach to leverage optical mouse to
enhance the web interaction on general PCs. MousePath works
as a lightweight and ubiquitous bridge to convey information
between the co-located smartphone and desktop web pages.
MousePath consists of two major entities, the MousePath trans-
mitter and the MousePath receiver. The MousePath transmitter
is an app running on the user’s smartphone. The MousePath
receiver is a web script offered by the webserver and running
in the web browser on the PC. MousePath works by putting
the optical mouse on top of the smartphone’s screen, and
its transmission is then started and instantly finished without
association and login frictions. Its core mechanism is encoding
data into the movement of the smartphone’s display content and
using the optical mouse of the computer to sense the movement
for decoding. This demo illustrates MousePath in two practical
scenarios: general message sharing, e.g., sharing a URL/password
from smartphone to PC’s web, and hardware interface sharing,
e.g., making smartphone sensor accessible for PC’s web.

Index Terms—Cross-device Information Sharing; Optical
Mouse; Visible Light Communication (VLC)

I. INTRODUCTION

With the widespread and adoption of mobile computers,
such as smartpads and smartphones, leveraging their com-
puting functionalities and sensing abilities to enhance the
interactions of co-located desktops is an appealing problem
that has attracted extensive research [1]. According to our
investigation, despite the user overhead in setting up the
connection, i.e., turning on the radio, searching the correct
ID, pairing, and probably inputting the password, existing
approaches all require deep modifications on the existing web
framework, and also, a local application or a browser extension
is still needed on the PC host to hand the information to the
web page, which suppresses their adoptions in practice.

In [2], we propose MousePath, which provides a more
ubiquitous and convenient approach of cross-device data trans-
mission between smartphones and web on PCs. MousePath
utilizes the motion sensing ability of optical mice. Apart from
the reflected backlight, the image sensor of the optical mouse
can also capture the light signals from underlying display
content. Utilizing this property, MousePath converts the shifts
of the display content on the smartphone’s screen to the
system’s mouse trajectories, through which the data can be
transmitted. The key benefit of MousePath is that it directly
conveys smartphone’s data to the webserver, without cumber-

MousePath
Transmitter
Tx-texture

MousePath-enabled Applications

Decoder

00 01 11 10

Web PageSmartphone

MousePath Receiver

Clipboard
Sensors …

Fig. 1. Overview of MousePath. MousePath consists of two major entities.
The MousePath transmitter app in the smartphone and the MousePath receiver
script embedded in the web page. The MousePath transmitter gathers informa-
tion in the smartphone, like sensor data and account credentials, and transfer
them to the MousePath receiver to enable new web functionalities, e.g.,
enabling Precise Location-based Service, and facilitating Password Managers.

some paring or doing large framework changes. As a result,
its deployment incurs minimum overhead and modifications.
To hand the data to the web page, the receiver application
only needs to run a piece of JavaScript code and no special
hardware is required. And then the web features depending
on certain hardware could be augmented via MousePath, since
multifarious information can be obtained from smartphones.

As Figure 1 shows, the MousePath system consists of
two major entities, the MousePath transmitter app, and the
MousePath receiver web script. The transmitter modulates
useful information into the shifts of the displayed texture,
called tx-texture. Then the optical mouse, put on the smart-
phone’s screen, obtains the movement vectors from the tx-
texture and reports them to the web script. Finally, the receiver
script in the web page can infer the movements of the
display content from the system’s mouse trajectories, through
which the data can be decoded. The data, e.g., the more
precise location information, can be used to enhance the user
experience.

To present the full MousePath system, we implement a
transmitter app on a Android smartphone and a web receiver
application. The receiver application is written in JavaScript,
which can be embedded in webpages and run in an unmodified
web browser. In this demo, we describe two application
scenarios for demonstrating the potential and features of our
MousePath system. One is the case of sensing sharing and the
other one presents message sharing.

Location

ShareShare

(b)

Positioning

Fig. 2. Precise Location-based Service. PCs are lack precise localization
hardware, but the location of a co-located smartphone can be shared to the
PC to enable location-based web services.

II. DEMO DETAIL

We implement our prototype of MousePath running on a
Xiaomi Mi Mix 2S as the transmitter and a desktop equipped
with Logitech M100 optical mouse as the receiver.

A. Implementation

On the smartphone, we run our MousePath transmitter app
(Figure 4b) for data transmission. MousePath transmitter app
calls C++ Reed-Solomon library through Java Native Interface
(JNI) for data encoding. The Galois field GF (26) is used in
Reed-Solomon coding. To modulate the movement vectors,
the MousePath transmitter app displays a 500× 500 pixel tx-
texture on the screen. The tx-texture is updated 60 times per
second. To avoid synchronous decoding errors from Jank [3],
the MousePath transmitter app uses GPU rendering instead of
CPU rendering and binds the tx-texture to the GPU texture
cache, which ensures that the rendering latency is within 16
ms.

The MousePath receiver hardware includes an optical mouse
and a PC. We implement the MousePath receiver as a
Javascript application (Figure 4(c)) so that it can be embedded
in web pages. In order to capture the mouse movement
events, the MousePath receiver uses the Mouse Lock API
[4] to constrain the target mouse cursor within an HTML
widget to prevent the cursor from going past the boundary
of the window. the MousePath receiver captures and demod-
ulates movement vectors from mousemove events. Then the
MousePath receiver calls the JavaScript Reed-Solomon library
for decoding and error correction.

B. Setup

MousePath takes the real use cases of the web on PCs into
account and proposes a generic and convenient data transfer
scheme from the smartphone to the web. Specifically, we
demonstrate how MousePath enhancing the web’s capability
in two scenarios. In each scenario, we would briefly describe
interactions of using the MousePath system to input in a web
server. We believe MousePath does not introduce too much
burden for users.

Scenario I: Precise Location-based Service (Figure 2).
When using location-based web services, such as web maps,

Location

ShareShare

(a)

Positioning

Fig. 3. Password Manager Companion. A message, e.g., a password, can be
shared from the smartphone to the webserver conveniently.

online shopping systems, etc., precise location information
could greatly improve user experience, e.g., automatically
filling the shipping address. Smartphone’s localization service
is based on fusing location information from several wireless
technologies, like GPS, iBeacons, Wi-Fi and cellular IP ad-
dress, etc. Without the aid of such hardware, it is essentially
not possible to fundamentally increase the precision of the
location of a desktop or laptop, which is primarily inferred
from its IP address. We enable the PCs to have precise
localization ability by sharing the location information from a
co-located smartphone through the MousePath channel, which
reduces localization error by nearly 94%. Figure 4 shows the
example of using MousePath to share user location through
location enhancing app and MousePath-enabled web page.

The user interacts with two interfaces. One is the MousePath
input app in her smartphone. The main action the user takes
is to put the PC’s optical mouse on top of the smartphone’s
screen. The second interface is the web browser of the PC. A
piece of JavaScript code is embedded in the web page as the
MousePath receiver. The receiver script is mainly responsible
for gathering mouse events and then decoding them. The
screenshots of the two interfaces and the action steps (1©- 4©)
are shown in Figure 4.

Step 1©. The user opens the MousePath input app in her
smartphone. The app contains a coding area for displaying
tx-texture, a data field to prompt the user of the message
needed to be sent, e.g., user location in this case, and a start
button (Figure 4(a)). Then, the user places the phone flat on
the desktop.

Step 2©. The user opens the target MousePath-enabled
web page in the PC, containing the input area, e.g., a form
of user location, and a mouse capture area. To start getting
the location from the user smartphone, the user moves the
cursor to click the mouse capture area to lock the pointer
via the Mouse Lock API (Figure 4(c)). Then, the receiver
script will capture every mouse event via mousemove event
listener [5], involving mouse movement vectors and corre-
sponding timestamps.

Step 3©. To ensure the location information being directly
delivered to the web server via MousePath, the user puts
the optical mouse of the computer on the coding area of
the smartphone, which is a the QR code-like area in the



MousePath Input APP

(a)



(b)



(c)



(d)

Fig. 4. Example of Scenario II. (a) Screenshot of transmitter UI for location
sharing. (b) User puts the mouse on the screen and click ’Start’ to transmit
the precise address to the PC.(c) The layout of MousePath-enabled web page,
involving data field and mouse capture area. (d) Output from the browser’s
console, including the moving vector values and corresponding timestamps.
After successful decoding, the receiver got user’s location from smartphone.

MousePath input app. Then, she presses the Start button to
start the localization service sharing (Figure 4(b)). Utilizing the
Location Manager API [6] in android, the MousePath
input app obtains the user’s real-time location, including a
valid latitude, a longitude, and an altitude, which are displayed
in the data field. Then, it encodes the input message into the
smartphone’s display content and leverages the optical mouse
of the PC to sense.

Step 4©. If everything goes right, the MousePath receiver
could infer the movements of the display content from cap-
tured mouse events. The moving vector and timestamp of
each mouse event are shown in the browser’s console (Figure
4(d)). After several seconds, all data demodulated and decoded

successfully. The MousePath receiver gets user location infor-
mation and fills it in to the corresponding forms. Now, the
web page gets the more precise localization service from the
user’s smartphone.

Scenario II: Password Manager Companion (Figure 3).
Currently, transferring the password to the PC through network
protocols, such as Bluetooth, or messaging apps, requires
cross-application data copy. Since the current clipboard allows
access from any applications, thus is vulnerable to eaves-
dropping attacks [7]. We augment the password manager by
providing an option for directly transferring the password to
the web server through MousePath. As MousePath is based
on detecting mouse movement, which is only allowed by the
focused foreground application, whose attack surface is much
smaller.

In Android, we added the MousePath Input App to the
contextual action bar (CAB). The user selects the password
to be shared and chooses MousePath in the pop-up CAB.
The chosen password will be automatically filled into the data
field. Then, similar to what was introduced in scenario II, the
user puts the optical mouse of the computer on the coding
area of the app and presses the Start button to transfer the
password to the MousePath receiver via the screen-to-mouse
channel. Note that, the password is directly conveyed into the
web page. Thus, MousePath performs better at both security
and convenience in comparison with manually copying from
clipboard.

ACKNOWLEDGEMENTS

We sincerely thank anonymous PerCom reviewers for their
valuable comments. This work is supported by the Key-
Area Research and Development Program of Guangdong
Province 2020B0101390001, the ShanghaiTech Startup Fund,
the Shanghai Sailing Program 18YF1416700, the “Chen
Guang” Program 17CG66 supported by Shanghai Education
Development Foundation and Shanghai Municipal Education
Commission, NSFC 62002224 and 62002150, and the Project
of “FANet: PCL Future Greater-Bay Area Network Facilities
for Large-scale Experiments and Applications” LZC0019.

REFERENCES

[1] H. Xia, J. Zhang, Y. Zhu, C. Yu, and Y. Shi, “Mobile assistant: enhancing
desktop interaction using mobile phone,” in Proceedings of the 2012 ACM
international conference on Interactive tabletops and surfaces, 2012, pp.
379–382.

[2] Z. Wang, Q. Huang, Y. Yan, Z. Yang, H. Ren, and Y. Zhang, “MousePath:
enhancing web interaction on PCs through smartphone and optical
mouse,” in 2021 IEEE International Conference on Pervasive Computing
and Communications (PerCom) (PerCom 2021), Kassel, Germany, Mar.
2021.

[3] Y.-D. Lin, E. T.-H. Chu, E. Chang, and Y.-C. Lai, “Smoothed graphic user
interaction on smartphones with motion prediction,” IEEE Transactions
on Systems, Man, and Cybernetics: Systems, 2017.

[4] “Mouse Lock API - Web APIs,” https://developer.mozilla.org/en-US/docs/
Web/API/Pointer Lock API, 2020.

[5] “mousemove - Web API,” https://developer.mozilla.org/zh-CN/docs/Web/
API/Element/mousemove event, 2020.

[6] “Location — Android Developers,” https://developer.android.com/
reference/android/location/Location, 2020.

[7] “clipboard attacks,” https://security.stackexchange.com/questions/33428/
is-a-password-in-the-clipboard-vulnerable-to-attacks, 2020.

