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AbstrAct
With the recent advance of technologies, smart 

homes are no longer just the subjects of science 
fiction and are now becoming a reality. It is essen-
tial for a smart home to understand its residents 
and provide entertainment and healthcare ser-
vices. Researchers have demonstrated the great 
potential of RF sensing in smart homes, including 
understanding the residents’ gesture commands 
and monitoring the residents’ health status unob-
trusively. Although RF sensing has appealing prop-
erties, it brings congestion to wireless networks. To 
make the situation worse, there is an unprecedent-
ed amount of wireless traffic in smart homes. In 
this article, we investigate the joint design of sens-
ing and communication systems to alleviate the 
strain on wireless resources. Instead of designing 
sensing and communication systems as separate 
objectives, we tend to address them jointly. We 
discuss this issue from two directions. The first is to 
empower the traditional sensing device with com-
munication capability, so that the sensing device 
will become a dual-function apparatus; the second 
is to enhance the sensing capability of WiFi signals 
by redesigning the packet format so that the cur-
rent communication infrastructure can also act as 
a sensing device. We believe that only with joint 
design can the sensing and communication system 
work harmoniously in smart homes, providing both 
unobtrusive sensing and ubiquitous connectivity.

IntroductIon
As we spend a large portion of our spare time 
at home, a comfortable, convenient and safe 
home is essential to our happiness and wellbe-
ing. In order to provide better services, homes are 
expected to understand the residents both phys-
ically and physiologically. Traditional approaches 
for home sensing either rely on (near-infrared) 
cameras or dedicated ambient/on-body sensing 
devices. However, cameras are privacy invasive 
and dedicated sensors are location/user-depen-
dent. To overcome these limitations, radio fre-
quency sensing, as an unobtrusive and ubiquitous 
sensing approach, is gaining popularity.

Radio frequency, which traditionally serves as 
a communication medium, is now emerging as a 
sensing medium. When RF signals propagate in 
the air, they will get blocked, reflected and scat-
tered by surrounding objects. By analyzing the 
physical signatures of RF signals (e.g., amplitude, 
phase, Doppler shift), we can infer the path that 
the signals traveled and understand what is going 

on in the surrounding environment. Compared 
with wearable technology, RF sensing does not 
require the users to wear any on-body sensors and 
thus is totally unobtrusive. Compared with vision-
based approaches, RF sensing has no require-
ment on the lighting conditions and can work in 
non-line-of-sight scenarios. Given these appealing 
properties, RF sensing has demonstrated its great 
potential in smart homes. Existing works show 
that wireless signals can be used to detect the 
presence and location of residents at home [1] 
so that we can schedule HVAC and lighting sys-
tems accordingly [2]. Recently, researchers show 
that we can understand the gesture commands of 
residents using RF signals [3, 4], which could pro-
vide user-friendly control for numerous intelligent 
devices in homes. Existing works also demonstrate 
that RF sensing has great potential in healthcare 
services. Researchers show that we can monitor 
residents’ heart rate and breathing rate [5] [6] 
unobtrusively using RF signals. RF signals can also 
understand residents’ gait patterns [7] and sleep 
cycles [8], which is of vital importance to elderly 
care and health management.

As the wireless spectrum is the shared medi-
um, when the sensing device is transmitting radio 
waves from time to time, it results in congested 
RF environments. To make the situation worse, 
there is an unprecedented number of intelli-
gent devices (e.g., smart speakers, smart HVAC 
systems, security and surveillance systems) in a 
smart home, which all require wireless resourc-
es for data communication and control message 
exchange. Although there are existing works using 
WiFi signals for sensing [6, 9, 10], there is inher-
ent confliction in the nature of sensing and com-
munication. In wireless sensing, known signals are 
used to probe the ambient channel state, while 
in wireless communication, the goal is to decode 
the unknown transmitted signals.

In this article, we investigate the joint design of 
sensing and communication systems. Instead of 
designing sensing and communication systems as 
separate objectives, we tend to address them joint-
ly. The goal is to improve the spectrum utilization 
and alleviate the uneasy coexistence between the 
sensing and communication systems. We study 
this subject from two directions. The first is to 
empower the traditional sensing device with com-
munication capability so that the sensing device 
will become a dual-function apparatus, which can 
perform sensing and communication tasks simul-
taneously. To achieve this goal, we need to bridge 
the gap between wideband sensing signals and 
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narrowband communication signals. The second 
is to enhance the sensing capability of traditional 
communication devices. The main challenge is to 
achieve the balance between communication effi-
ciency and sensing performance. By redesigning 
the WiFi packet format, we can enhance the sens-
ing capability of WiFi signals so that in the near 
future the WiFi access point at our homes will not 
only perform data communication but also has 
the sensing capability comparable to a radar.

Only with the joint design of sensing and com-
munication, can we have efficient spectrum usage 
in smart homes. In this article, we first briefly 
review the working principle of RF sensing and 
introduce some representative work. Then we 
present our initial attempt along the two direc-
tions. Finally, we discuss the challenges and con-
clude this article.

PrImer of rf sensIng
Existing works on RF sensing mainly fall between 
two categories, either use a traditional sensing 
device (e.g., radar) or explore the sensing capa-
bility of a traditional communication device (e.g., 
WiFi access point).

rAdAr sensIng
Radar, traditionally thought of as bulky, expensive 
and limited to military applications, now becomes 
a miniature device and are entering our homes 
with promising capabilities. Although there are 
many types of radar, here we introduce the work-
ing principle of FMCW radar as a representative.

FMCW is short for frequency-modulated con-
tinuous wave, where the frequency of the signal 
increases linearly with time, as shown in Fig. 1. 
The signal sweeps BW bandwidth in duration T.

The working principle of an FMCW radar 
is as follows. The radar transmits a linear fre-
quency-modulated wave and the wave will get 
bounced off from objects. Each reflection from 
an object is a delayed copy of the transmitted 
signals. FMCW radar transforms time-of-flight 
measurement (t) into measuring the frequency 
offset (Df) between the transmitted wave and the 
reflected wave, as t and Df preserve the linear 
relationship Df = R · t, where R is the ramp rate 
of the linear chirp. At the receiving chain of radar, 
the received signal is mixed with the transmitted 
signal. The output from the mixer is the interme-
diate frequency (IF) signal, whose frequency is the 
difference of the two inputs, that is, Df.

The ranging resolution depends on the radar’s 
ability to distinguish two nearby locations, which 
depends on the frequency resolution of Df. We 
calculate Df by performing FFT on the baseband 
signal over a chirp duration T and thus, the fre-
quency resolution tres is inversely proportional 
to T. Transforming it into distance resolution, we 
have that ranging resolution is inversely propor-
tional to the signal bandwidth. For two objects 
that are separated by a distance larger than dres, 
their reflections will fall into different FFT bins 
and thus their movements can be decoupled. It 
indicates that FMCW radar can track multiple tar-
gets-of-interest simultaneously.

Both industry and academia are designing min-
iature radar for home applications. Soli [4], a mil-
limeter-wave radar designed by Google, is able 
to recognize ubiquitous hand gestures and thus 

can be used to understand residents’ gesture com-
mands for interacting with numerous intelligent 
devices in smart homes. The soli chip, incorporat-
ing the entire sensor and the antenna array, is only 
8mm  10mm. Researchers from MIT are also 
devoted to designing miniature radars for sensing 
purposes. WiTrack [3] and WiTrack2.0 [11] are 
both FMCW radars working on the 5.56–7.25GHz 
band. WiTrack [3] can localize the center of a 
human body in the 3D space with a median error 
of less than 20 cm in each dimension. It can also 
track the coarse direction of a pointing hand. 
WiTrack2.0 [11] is more powerful than WiTrack 
[3] as it can localize multiple users purely based 
on the signal reflections off users’ bodies.

Besides localization, the researchers go further 
to look at the minute movement of users. When 
the person inhales and exhales, his chest will 
expand and contract. Based on this observation, 
Vital-Radio [5] can monitor users’ breathing and 
heart rate unobtrusively with 99 percent accu-
racy, even when users are 8 meters away from 
the radar or users are in a different room with the 
radar. WiGait [7] uses RF signals to continuous-
ly measure gait velocity and stride length, which 
are important health metrics among the senior 
population. In [8], the authors developed a deep 
learning model to predict sleep stages from radio 
signal measurements. The model is a modified 
adversarial training regime that can discard infor-
mation in RF signals that are highly dependent on 
individuals and environments but are irrelevant 
to sleep stages. The accuracy for identifying four 
sleep stages is 80 percent, which is comparable 
to EEG-based sleep monitors. Zhao et al. [12] 
designed RF-Pose3D, which is the first system that 
can infer 3D human skeletons containing 14 key 
points, including head, neck, shoulders, elbows, 
wrists, hip, knees and feet. RF-Pose3D can track 
each key point with an average error below 5cm 
along the three axes and maintain this accuracy 
even in the presence of multiple people and new 
environments unseen in the training set, which 
will have a huge impact on both entertainment 
applications (e.g., gaming) and healthcare services 
(e.g., rehabilitation). Although works from this cat-
egory demonstrate promising sensing results, the 
radio signals are used only for sensing purposes 
and cannot carry information.

FIGURE 1. The working principle of FMCW. A linear 
frequency modulated signal is transmitted from 
the radar. When it gets reflected by objects, 
the radar will compare the frequency offset 
between the transmitted and reflected wave to 
estimate the time-of-flight parameter.
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wIfI sensIng

As for the second category, as WiFi signals are 
ubiquitous nowadays, WiFi sensing has shown 
growing popularity. We can obtain the channel 
state information (CSI) from commodity WiFi 
devices, which contain the physical signatures of 
the multipath profi le. The channel state informa-
tion H contains the integrated information from 
n propagation paths, where along each path, the 
signal is attenuated and delayed. When the tar-
get-of-interest moves, its movements will cause 
changes in the physical information at the corre-
sponding path. This is the underlying principle for 
WiFi sensing.

The authors in [6] use WiFi signals not only to 
monitor users’ breathing rate but also monitors 
heart rate. They work by monitoring the minute 
movement of users’ chests to infer inhaling and 
exhaling. The authors in [13] track human position 
in the room with average error 0.75m. Guo et al. 
[10] proposed a WiFi based system to understand 
human dynamics, including crowd size, density 
distribution and moving patterns when multiple 
people are gathering.

As commodity WiFi devices are used, the 
sensing tasks are performed using ongoing data 
transmissions. Thus, the communication capability 
of RF signals is preserved. However, CSI is the 
integrated information from multiple propagation 
paths and it is not straightforward to extract the 
path corresponding to the target-of-interest. In 
order to achieve satisfactory sensing results, it usu-
ally requires the environment/surrounding objects 
to be static.

emPower trAdItIonAl sensIng deVIce wIth 
communIcAtIon cAPAbIlItY

In recent years, miniature radars are entering our 
homes with promising capabilities, such as under-
standing the gesture commands of the residents 
and fall detection for the elderly. However, radar 
signals are customized for the sensing purpose 
and are incompatible with legacy communica-
tion standards. Although there are existing works 
designing dual-function waveforms for sensing 
and communication, they work for radar-to-radar 
communication in military applications, where in 
home scenarios, we target radar-to-IoT commu-
nication.

Here is the dilemma for joint design. On one 
hand, radar signals are usually wideband signals as 
the sensing resolution is inversely proportional to 
the signal bandwidth, that is, the larger the band-
width, the better the sensing resolution; on the 

other hand, legacy communication devices are 
usually narrowband transceivers (e.g., 20MHz for 
WiFi, 1MHz for Bluetooth, 500kHz for LoRa) and 
they cannot capture wideband radar signals.

To bridge this gap, we observe that it is possi-
ble to create a narrowband signal by combining 
two wideband signals using RF nonlinearity [14, 
15]. RF circuits are supposed to be linear, that is, 
the output signal is a linear function of the input 
signal. When the hardware is imperfect, the circuit 
will exhibit non-linear behavior. The output signal 
will become a non-linear function of the input sig-
nal. That is, the output signals will contain high-or-
der harmonics of the input signals. When the 
input signal contains carrier frequencies f1 and f2, 
the output signal will contain not only the original 
frequencies f1 and f2, but also harmonics resulting 
from the non-linear behavior. Specifi cally, assume 
that the input signals are two sine waves, the sec-
ond-order harmonics become

λ2Sin
2 = λ2

2
2 − cos(2π2 f1t)− cos(2πf2t)[

+2cos(2πf1t − 2πf2t)− 2cos(2πf1t + 2πf2t)]
(1)

The output signal contains carrier frequency 
2f1, 2f2, f1 – f2 and f1 + f2. It indicates that when 
two signals enter a non-linear circuit, there will be 
a harmonic whose frequency is the diff erence of 
the two input signals. Consider the case that the 
two input signals are both linear Frequency Mod-
ulated Continuous Wave (FMCW) chirp sequenc-
es. The two chirps can be the sensing signals 
transmitted by diff erent antennas on a radar, as a 
radar usually has multiple TX-RX antenna pairs to 
handle multi-path refl ections [11]. The fi rst chirp 
starts from f1 and its frequency increases linearly 
with time at a ramp rate R; the second chirp starts 
at f2 and also increases with time at the same rate. 
As their frequency gap is constant, the second-or-
der harmonics will contain a component, which is 
a constant wave at frequency f2 – f1. It can serve 
as the carrier wave for the data signal. It brings 
the feasibility that we can exploit this non-linearity 
phenomenon to convert two wideband sensing 
signals into a narrowband data signal.

Above is the high-level idea. Now we pres-
ent the system overview and illustrate the design 
details for both downlink and uplink.

sYstem oVerVIew
Figure 2 shows the system overview. The radar 
is continuously performing sensing tasks. When 
there is data for downlink transmission, that is, 
from the radar to an IoT node, the radar will use 
the dual-function radar signals, which embed the 

FIGURE 2. System overview.
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IoT data packets. For the remaining time, the 
radar will use the original linear chirp signal and 
listen for uplink transmission.

This radar has two key distinctions from a usual 
FMCW radar. First, we embed data packets into 
the sensing signals so that the sensing signals are 
no longer the standard FMCW signals. Second, 
we design a new receiving chain on the radar 
so that it not only can act as radar but also can 
decode uplink transmissions from IoT devices. We 
summarize the high-level operations of the radar 
as follows.

Sensing: Similar to other RF radars, the radar 
accomplishes the sensing task by transmitting 
wideband sensing signals. These signals propa-
gate in the air and get refl ected by obstacles. By 
analyzing the refl ections, the radar can detect the 
presence and movement of objects and human 
bodies in the space. This functionality is the same 
as a normal radar.

Communication: Communication tasks are 
accomplished at the same time with the sensing 
tasks. For the downlink part, the sensing signals 
transmitted by the radar will resonate at the anten-
na on an IoT device. The signals will enter the 
non-linear circuit and create a narrowband har-
monic, which turns out to be a legitimate IoT data 
packet and can be decoded by the IoT device. For 
the uplink part, the receiving chain in the radar is 
able to pick up both refl ected sensing signals and 
uplink data transmissions simultaneously. The radar 
separates these two types of signals apart and carry 
out corresponding processing respectively.

downlInk duAl-functIon wAVeform desIgn
The goal for downlink design is to design the 
dual-function radar signals, where the sensing sig-
nals transmitted by the radar should preserve the 
sensing resolution while their joint harmonics is 
compatible with legacy communication devices. 
To achieve this goal, the desired harmonic should 
be a signal that fully complies with the commu-
nication standard of the legacy devices. In other 
words, it should be a signal at the legitimate fre-
quency band with the right modulation scheme.

To achieve this goal, we fi rst introduce a time 
off set between the sensing signals transmitted by 
the two TX antennas. When the two linear chirps 
sweep the same frequency band and their time 
offset is half the chirp duration, the desired har-
monic (i.e., |f1 – f2|) will become a constant 
wave, as shown in Fig. 3. When BW = 2fL, in the 
first half of the chirp (0 < t < T/2), we will have 
f1(t) – f2(t) = fL, while in the second half of the 
chirp (T/2 < t < T), we will have f2 (t) – f1 (t) = fL. 
In this way, we can create a carrier wave at the 
desired frequency fL, while both original chirps 
sweep the full bandwidth and thus preserve the 
sensing resolution.

Then we will embed data signals into the signal 
on one antenna. If we modulate signal s(t) onto 
the wave on the fi rst antenna, the received signal 
can be written as

RX = TX1 + TX2 + (TX1 + TX2 )2 + …
     = s(t) sinf1 (t)t + sinf2 (t)t + 
        [s(t) sinf1 (t)t + sinf2(t)t ]2 + …
     = …–s(t) cos[f1 (t) + f2 (t)]t + s(t) cosfL t + …. 
   (2)

We can see that in these harmonics, there is 
one term that we desire, which contains the signal 
s(t) at frequency fL.

We can determine the value of fL and the mod-
ulation scheme of s(t) to make the signal compat-
ible with the communication interfaces of legacy 
devices, so that the radar can transmit data directly 
to legacy devices such as Bluetooth/ZigBee/LoRa 
nodes in a smart home. In an experiment, we test 
with LoRa nodes. The radar chirp signal sweeps 
an 866MHz bandwidth where the center frequen-
cy is 900MHz, thus fL = 433MHz. The receiver, 
SX1278, is configured to work at 433MHz. The 
LoRa data rate is 3.4 kb/s. In order to amplify the 
nonlinear phenomenon, we add a diode between 
the antenna and the RF circuit, which is a non-lin-
ear component. This LoRa node can successfully 
decode the harmonics generated by the Radar 
device. The received signal strength drops from 
–98dB at 1.6m to –118dB at 16m in the line-of-
sight scenario. It shows that we can generate a leg-
acy LoRa signal from the wideband radar signals.

uPlInk receIVer desIgn
The goal of uplink design is to enable the radar to 
decode uplink transmission. The receiving chain 
in the FMCW radar is designed for the sensing 
task but not for data communication. To serve 
both as a sensing and communication device, the 
radar needs to collect targets’ reflected signals 
and decode uplink transmission simultaneously. 
To achieve this goal, we propose a new design 
for the radar receiving chain.

In order to separate data signals and sensing 
signals, we observe that when the sensing signal 
is down-converted, its maximum frequency fmax is 
dependent on the slope of the FMCW chirp and 
the maximum detectable range. In other words, 
the sensing signals will fall within the frequency 
range [0, fmax]. Thus, we can separate data signals 
and sensing signals on the frequency domain by 
ensuring that fDATA-IF ≥ fmax + DF, where f(DATA-IF) is 
the intermediate frequency of data signals and DF
is the guard band between the sensing signals and 
data signals. In this way, we can separate data sig-
nals and sensing signals in the frequency domain 
and they will not interfere with each other. In the 

FIGURE 3. Two unsynchronized FMCW chirps, with half chirp duration off set. In 
this way, the two chirps can create a harmonic at frequency BW/2, while 
both chirps sweep the full sensing band.
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implementation, we estimate fmax to be 0.5MHz 
according to the chirp rate and the maximum 
detectable range. DF is set to be 0.5MHz. Thus, 
fDATA-IF is set at 1MHz. Uplink LoRa signals is 
down-converted to 1MHz while the down-con-
verted sensing signal is within DC and 0.5MHz. 
Evaluation results show that we can successfully 
decode the uplink data signals and the sensing 
performance is not aff ected by the data signals.

enhAncIng the sensIng cAPAbIlItY of 
trAdItIonAl communIcAtIon deVIces

WiFi sensing has its unique advantages owing 
to the widespread WiFi infrastructure. Howev-
er, the current WiFi sensing methods mainly rely 
on CSI information extracted from the packet 
preamble which occupies a small portion of the 
WiFi packet. In other words, we can get only one 
measurement per packet. This hinders the sensing 
capability in time-critical cases and highly dynam-
ic scenarios. This intensifi es the inherent confl ict 
between communication and sensing, as sensing 
prefers short packets (i.e., more packets, more 
CSIs) but communication prefers aggregated long 
packets (i.e., less packets, less overhead). Our 
goal is to enhance the sensing capability of WiFi 
signals and the idea is to exploit pilot subcarriers. 

Our design rationale relies on the signal per-
sistence of pilot subcarriers and its interleaving 
structure with data subcarriers in the frequency 
domain. Figure 4 shows the frame format of a typi-
cal WiFi packet. HT-LTF fi elds in the preamble that 
are used to derive CSI for each spatial stream, gen-
erally occupy several microseconds. Pilot subcarri-
ers, however, spread over the whole HT-Data fi elds 
and may occupy several milliseconds, especially 
when data fi elds contain aggregated-MSDUs. This 
creates more opportunities for sensing in time-criti-
cal cases and rapidly changing scenarios.

WiFi specifi cations adopt OFDM modulations 
to combat frequency-selective fading. Figure 4 
also presents the interleaving structure of pilot 
and data subcarriers in the frequency domain. 
This structure provides opportunities for enhanc-
ing sensing capability without degrading commu-
nication effi  ciency.

PIlot-bAsed sensIng
To illustrate the working principle of pilot-based 
sensing, we consider a basic scenario where two 
WiFi devices behave similarly as a bi-static radar 
system to detect a nearby object. The transmit-
ted signals from a WiFi transmitter are reflected 
by the object, and then a WiFi receiver infers the 
relative distance and velocity of the object from 
the physical properties of the received signals. It 
is assumed that the relative distance between the 
object and WiFi transceivers bring tp delay in the 
time domain, and the relative velocity between 
them brings f p

D Doppler shift in the frequen-
cy domain. Assume that the transmitted signals 
x(t) contain K packets, and each has M OFDM 
symbols. There are Npl pilot subcarriers within N
subcarriers in an OFDM symbol. Tk is the time 
duration of a packet. The refl ected signal from the 
object can be represented as:

yp (t) = x(t − τ p )exp( j2πfD
pt)

= s[n]exp j2πfn (t − kTk )( )
n=0

N−1

∑
k=0

K−1

∑
                           exp( j2πfnτ p )exp( j2πfD

pt)  (3)
where s[n] is the modulation symbol on the n-th 
subcarrier. For pilot subcarriers, they are defi ned 
in advance. In general, there are several (say P) 
multi-paths reflected/scattered by other objects 
besides the target object. Thus, the received sig-
nal at the WiFi receiver is y(t) = p

p=1yp(t) .
The goal of sensing is to derive the rela-

tive distance and velocity of the object buried 
in the received signal y(t). This can be achieved 
by performing DFT and IDFT along the frequen-
cy and time axes of the pilot subcarriers to get 
a delay-doppler map. Then we can estimate the 
target’s distance and velocity from the delay-dop-
pler map.

PIlot PAttern And wAVeform desIgn
Pilot pattern and waveform have effects on the 
sensing performance. Given fi xed bandwidth, the 
frequency resolution is inversely proportional to 
the number of pilot subcarriers Npl. According to 

FIGURE 4. Frame format of an 802.11n (HT) packet.
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the operation of IDFT, the maximum time limit is 
inversely proportional to the frequency resolution, 
which in term is proportional to Npl. Thus, the 
maximum unambiguous distance is proportional 
to Npl. In terms of choosing a proper pilot pattern, 
we need to jointly consider the trade-off s between 
sensing and communication requirements in spe-
cifi c applications and adjust patterns in a dynamic 
manner. For example, when the communication 
load is small, we can temporally adopt a denser 
pilot pattern, that is, more subcarriers are used as 
pilot subcarriers, so that we can improve the max-
imum unambiguous distance for sensing.

To enhance the sensing capability, the pilot 
waveforms along the time axis can adopt wave-
forms with a good auto-correlation property so 
that match fi ltering can be applied to enhance the 
sensing function. Barker code is a viable option 
for two reasons. First, Barker codes imply the use 
of the same modulation scheme, BPSK, as in pilot 
subcarriers of existing WiFi protocols. Second, 
Barker codes are –1/1 alternating sequences, sat-
isfying the power masking requirement for pilot 
subcarriers in WiFi. Thus, it is compatible with 
phase and frequency tracking for communication.

sYstem oVerVIew
Figure 5 shows the system overview. The sys-
tem consists of two roles, WiFi transmitter (Tx) 
and WiFi receiver (Rx). On one hand, Tx and Rx 
exchange data via WiFi packets. On the other 
hand, Tx and Rx behave as a bi-static radar sys-
tem to detect a nearby object. We summarize the 
high-level operations of the system as follows.

Communication: Similar to existing WiFi devic-
es, our system conducts the transmission task 
by transmitting WiFi packets. Specifically, WiFi 
Rx demodulates signals on data subcarriers to 
retrieve the transmitted information. The only dif-
ference here is that WiFi Tx should indicate the 
pilot pattern in the header part of the packet so 
that WiFi Rx can fi nd the positions of data subcar-
riers for demodulation.

Sensing: The system accomplishes the sens-
ing task by transmitting WiFi signals. The trans-
mitted signals from a WiFi Tx propagate in the 
air and get reflected by the object, and then a 
WiFi Rx infers the relative distance and velocity 
of the object via processing pilot signals. WiFi Rx 
knows the pilot waveform adopted by Tx through 
indicators in the packet header or prepositive 
communication. Then Rx performs corresponding 
match filtering and DFT/IDFT processing to get 

a delay-doppler map. Then Rx estimates the rela-
tive distance and velocity of the object from the 
delay-doppler map.

oPen chAllenges
In this section, we discuss several challenges relat-
ed to the joint design of sensing and communi-
cation.

coeXIstence of rAdAr And heterogeneous Iot deVIces
Although the dual-function apparatus can be used 
for both sensing and communication, it only com-
plies with one specifi c type of device (e.g., WiFi). 
In other words, the radar can perform the sensing 
task and communicate with WiFi devices simulta-
neously. However, there are other devices work-
ing at the same band as WiFi, such as Bluetooth 
and ZigBee devices. The dual-function device is 
not able to recognize these signals, neither can 
communicate with these devices. As sensing tasks 
usually require generating persistent sensing sig-
nals, which may occupy the channel continuously 
and leave other devices less opportunity for trans-
mission.

Given that there are various types of IoT devic-
es in a smart home which may talk in different 
protocols, the joint design needs to consider not 
only a specifi c protocol, but also all possible pro-
tocols that may exist in a smart home scenario, so 
that the sensing and communication system can 
work harmoniously.

PersIstence nAture of sensIng And 
rAndomness nAture of communIcAtIon

Sensing signals and communication signals are 
diff erent in their nature. A sensing application usu-
ally requires generating persistent sensing signals, 
while communication signals are transmitted only 
when there is a need for data communication. 
When we reuse the data signal for sensing, the 
measurement that we obtained may not be strict-
ly periodic and may be insufficient in terms of 
sampling rate. To address this challenge, we may 
use interpolation techniques to transform uneven 
observations into periodic ones. The dual-function 
AP may also generate dummy packets that are 
purely intended for sensing purposes, when there 
is insuffi  cient traffi  c.

conclusIon
In this article, we discuss the joint design of sens-
ing and communication in smart homes. As we 
take sensing and communication as an integrated 

FIGURE 5. System overview. 
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system, we can alleviate the uneasy coexistence 
between them and make them work harmoni-
ously. We discuss this issue from two directions: 
empower the traditional sensing device with 
communication capability, and enhance the sens-
ing capability of the traditional communication 
device. We also discuss the open challenges and 
hope that this article can intrigue research inter-
ests in this subject.
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Sensing signals and communication signals are different in their nature. A sensing application usually 
requires generating persistent sensing signals, while communication signals are transmitted only 

when there is a need for data communication.


