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Abstract—Network measurement provides operators an efficient tool for many network management tasks such as performance

diagnosis, traffic engineering and intrusion prevention. However, with the rapid and continuous growth of traffic speed, it needs

more computing and memory resources to monitor traffic in per-flow or per-packet granularity. Sample-based measurement systems

(e.g., NetFlow, sFlow) have been developed to perform coarse-grained measurement, but they may miss part of records, especially for

mice flows, which are important for some networkmanagement tasks (e.g., anomaly detection, performance diagnosis). To address these

issues, data streaming algorithms such as hash tables and sketches have been introduced to balance the trade-off among accuracy,

speed, andmemory usage. In this article, we present a systematic survey of various data structures, algorithms and systemswhich have

been proposed in recent years to perform fine-grainedmeasurement for high-speed networks.We organize thesemethods and systems

from a software-defined perspective. In particular, we abstract fine-grained networkmeasurement into three-layer architecture.We

introduce the responsibility of each layer and categorize existing state-of-the-art works into this architecture. Finally, we conclude the

article and discuss the future directions of fine-grained networkmeasurement.
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Ç

1 INTRODUCTION

WITH the explosion of network usage and traffic volume,
congestion and anomalies become more likely to hap-

pen because of sub-optimal network configurations and
malicious attacks, which then will compromise network sta-
bility and security, and lead to economic loss. To guarantee
the network performance, network measurement provides
an avenue for efficiently collecting probing messages from
the data plane, which paves the way to detect bottlenecks
and anomalous behaviors. According to a recent study [1],
the market revenue of network traffic monitoring and ana-
lyzing is expected to achieve 2.32 billion USD by 2020, at a
Compound Annual Growth Rate of 24.7 percent. Lately,
mainstream cloud providers, such as Azure [2] and Google

Cloud [3], have developed more efficient and fine-grained
tools for network measurement, which improve the trans-
parency into networks and lower the barrier in performance
analysis and network optimization.

Network measurement has been investigated since
1980s. Network administrators define the monitoring scope
and granularity according to specific measurement tasks,
and some measurement tasks (e.g., anomaly detection, per-
formance diagnosis) require fine-grained measurement of
network traffic. However, the hardware limitation of com-
puting devices and switches brings great challenges to han-
dle all the traffic packets. Therefore, network administrators
have to sample these packets and only store the information
of this sampled part. These sample-based measurement
methods have been widely used due to their low storage
and computational overhead, such as NetFlow [4], sFlow [5],
sticky sampling [6], sample and hold [7], OpenWatch [8]
and [9], [10]. These algorithms drop too much traffic infor-
mation, and thus the accuracy of measurement results can
not be guaranteed. As a result, it is hard to detect instanta-
neous anomalies and to count flow distribution.

In modern data center environment, a large volume of
network traffic needs well-formed management [11], [12],
[13], which fundamentally depends on high-resolution
and fine-grained network measurement methods. Works
that fully utilize these resources to achieve per-packet
monitoring have been proposed [14], [15], [16], [17], [18].
These methods leverage well-designed data structures or
advanced hardware features to resolve a set of queries
related to network states and flow conditions, and then
capture a complete picture which network administrators
are interested in.
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Recently, researchers seek to boost the performance of net-
work measurement through dedicated network devices with
specific requirements and improved algorithms (e.g. [15],
[17], [19]). However, vendor-specific ASICs can not support
customized packet processing pipelines, which hinders the
deployment of advanced data structures designated for fine-
grained networkmeasurement. The advent of programmable
packet processor (P4 [20]) and virtual switches (e.g., Open
vSwitch [21], BESS [22]) brings more options to the design of
new measurement methods. For example, P4 language
together with a recent programmable Ethernet switch [23]
can achieve such flexibility at a speed of 12.8 Tbps. In addi-
tion, virtual/software switches are widely deployed in VM
and container environments to support packet forwarding
for VMs or containers. Due to the flexibility of software, more
complicated procedures can be implemented in network
measurement, and seamlessly merged into virtual switches.
Both P4 and virtual switches provision extra computing
power to switches, and launch concerted efforts towards
fine-grained networkmeasurement.

Many novel methods and systems have been proposed in
research community to conduct network measurement for
high-speed networks. We broadly divide these methods
and systems into two categories according to their measure-
ment granularity:

� Coarse-grained measurement methods. Some measure-
ment methods like NetFlow [4] and sFlow [5] adopt
sampling strategy to adapt to the traffic speed. They
record one packet from every N packets, which can
be customized by network administrators. The sam-
pled packets are collected by remote collectors, and
further analyzed by upper-layer applications [24],
[25], [26]. When a traffic burst happens, switches
handle the increased traffic scale by reducing the
sampling rate [27], in the meantime, with higher pos-
sibility missing many mice flows. Although many
works have been explored to infer original traffic
from the sampled parts [28], [29], [30], the accuracy
is still limited by the low sampling rate required to
make the measurement operation affordable [31].
We define this kind of methods as coarse-grained
methods since they drop too much traffic informa-
tion, especially for mice flows, which is important
for many measurement tasks.

� Fine-grained measurement methods. In contrast to the
sample-based methods, some data streaming algo-
rithms perform a single pass over all the packets and
then produce an estimate of the traffic characteristics.
For example, the sketch-based algorithms (e.g., Count
Sketch [32], CU Sketch [7], Count-Min Sketch [14])
summarize traffic statistics of all observed packets
with sketches, which is a form of lossy compression
on the original traffic data. Although the summariza-
tion induces a loss of resolution for analysis (due to
hash collision), the degree of error is theoretically
related to the amount of available resources. Besides
sketch-based methods, many other methods can be
used in fine-grained network measurement too (e.g.,
Frequent [33], Lossy Counting [34]). We define these
methods as fine-grained measurement methods since

they count and summarize network traffic without
missing any flow packets.

In this survey, we explicitly focus on the fine-grained net-
work measurement methods, and thus the coarse-grained
methods are out of our scope since they miss too much
information while facing heavy traffic scenarios. Note that
some algorithms (e.g., Count-Min Sketch [14]) are not
unique for network measurement. However, they act as an
essential block in current fine-grained measurement sys-
tems [35], [36].

We hold the view that an ideal network measurement
system need to be general, flexible and user-friendly.
Although existing fine-grained methods meet the efficiency
and accuracy requirements of network measurement, there
are still some challenges. The first challenge is that most
methods just support specific measurement targets. For
example, Frequent [33] can just find all majority items with-
out counting accurate frequency. Sketch-based algorithms
like Count-Min Sketch [14] can not get flow cardinality [37].
More importantly, most measurement methods do not take
usability into account. For example, sketch-based algo-
rithms demand intensive manual efforts to configure the
parameters in real deployment [38]. Furthermore, some
measurement targets (e.g., heavy hitter [6]) are threshold-
based. However, existing heavy hitter detection methods
take the threshold as input and measurement accuracy is
tightly coupled with the threshold choice [38]. In this sur-
vey, we abstract fine-grained network measurement into
software-defined architecture. In particular, we divide a
measurement system into three layers: an operation layer, a
control layer and an application layer. We discuss the
responsibility of each layer and categorize existing fine-
grained measurement methods and systems into this archi-
tecture. Data streaming methods like sketches belong to the
operation layer, and the control layer orchestrates existing
measurement data structures and algorithms to conduct
specific measurement tasks. In the application layer, net-
work administrators can define measurement applications
by exploiting user-friendly APIs without considering which
concrete methods to use.

Note that we do not give a comprehensive design or
implementation of the software-defined measurement
architecture in this paper. Our contributions are that we
give a systematic survey of various methods and systems in
fine-grained measurement, and organize these methods and
systems from a software-defined perspective. We hope our
survey and the perspective can offer an all-around under-
standing of this area and motivate more novel ideas in fine-
grained network measurement.

Most of the related surveys in the literature focus on data
analysis. Alconzo et al. [39] focus on reviewing the big data
analytics of high-volume measurement data. Survey [40]
also focuses on big data analytic, but it mainly discusses net-
work intrusion detection. Our survey is also different
from [41] which introduces integrated network manage-
ment tools where administrators can directly operate on a
GUI to check traffic information. To the best of our knowl-
edge, this is the first survey for the fine-grained measure-
ment of high-speed networks.

We begin with the background knowledge of fine-
grained measurement in Section 2, which includes several
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terms, some fundamental measurement targets, three basic
algorithms and our principles for relevant work selection.
We then introduce the three-layer architecture at the begin-
ning of Section 3 and categorize existing fine-grained mea-
surement methods and systems into the operation layer (see
Section 3.1), the control layer (see Section 3.2) and the appli-
cation layer (see Section 3.3) respectively. Finally, we con-
clude the paper and discuss the future directions of fine-
grained network measurement in Section 4.

2 BACKGROUND

In this section, we will briefly introduce the background
knowledge of fine-grained measurement. We first give the
definitions of some fundamental terms and measurement
targets, which are widely used in this paper. Then we intro-
duce three basic algorithms, which have a profound impact
on current network measurement systems.

During network measurement, an epoch is defined as a
time period of collecting. Considering the limitation of the
storage capability, switches usually require recording infor-
mation of traffic for a short period of time, and then send the
information to a server, which allows switches to clear old
records to make room for next small time slot. This small
time slot is called an epoch, or a measurement epoch. What’s
more, we call a flow is an elephant flow or a heavy flow when
the flow’s volume significantly larger thanmost of the others,
with at least C packets. Similarly, a mouse flow is a flow with
fewer than C packets. The constant C is a varying parameter
according to different traffic characteristics [42].

Measurement targets are specific metrics that we want to
figure out in a measurement task. Here, we list several most
fundamental measurement targets.

Heavy hitter [6]: A flow whose total size exceeds a specific
threshold in a measurement epoch. Heavy hitters detection
can help administrators to understand which flows occupy
the most network bandwidth in an epoch.

Top-k [43]: The k flows with the largest size in a measure-
ment epoch. It can be used to analyze which web pages are
most popular or which flows occupy most bandwidth in an
epoch.

Hierarchical heavy hitter (HHH) [44]: The flow which is
defined by the longest prefixes (such as the prefixes of
source IP) exceeds a specific threshold size after excluding
any hierarchical heavy hitter descendants. For example, we
use 32 bits source IP to define the flow, then we can build a
32-level binary tree, in which the leaf nodes are real IP
addresses and other nodes are prefixes like 192:168:0:X.
The size of this prefix flow is the sum of all the flows whose
prefix is 192:168:0:X. If all the descendant flows of
192:168:0:X are small but the size of 192:168:0:X exceeds a
threshold, then prefix flow 192:168:0:X is a hierarchical
heavy hitter. The prefix 192:168:X:X is a hierarchical heavy
hitter if its size exceeds threshold after decreasing all the
hierarchical heavy hitter descendants like 192:168:0:X. The
hierarchical heavy hitter can be considered as a heavy hitter
in the perspective of clusters.

Heavy changer (HC) [45]: A flow whose difference in size
between two consecutive epochs exceeds a specific thresh-
old. A heavy changer can be considered as a signal of con-
gestion or malicious attacks.

Superspreader (SS) [46]: A source host that sends data to
more than a specific threshold number of destination hosts
in a measure epoch. It can be a network scanner which
detects possible vulnerabilities of hosts.

DDoS [47]: A destination host which is under DDoS
attack and receives data from more than a specific threshold
number of source hosts in a measurement epoch.

Cardinality [37]: The number of distinct flows in a mea-
surement epoch. It can be used to calculate the accessing fre-
quency of a service or a server.

Flow size [48]: The size of any flow which can be identi-
fied by a user-defined flow key. It is useful for network ser-
vice providers to calculate the costs of traffic which are
generated by users.

Flow size distribution [31]: The size distribution of mea-
sured flows in an epoch. This target aims at analyzing whole
bandwidth occupancy instead of focusing on a single flow,
which is helpful for network performance improvement.

All the above measurement targets need fine-grained
measurement of the time-varying network traffic. However,
the rapid and continuous growth of traffic speed brings
great challenges to measure these targets. Fortunately, data
streaming techniques have been introduced to perform an
approximate measurement, which balance the trade-off
among accuracy, speed, and memory usage. Here we intro-
duce three representative algorithms, which have a pro-
found impact on current network measurement systems.

Lossy Counting [6] aims to find all items that exceed a user
defined frequency. Given a very small number " to find all
items whose frequency exceed "n, the algorithm divides an
incoming stream into buckets with width w ¼ d1"e conceptu-
ally, where the bucket id varies from 1 to dnwe. The algorithm
maintains a data structure in the form of ðe; f;DÞ, where e is
the input item in the stream, f is the estimated frequency,
and D is the maximum error of f . When processing the cur-
rent input item i with total processed packet number n0, if
ði; f;DÞ has already existed, we add f ; otherwise we create a
new tuple ði; 1; current bucket id� 1Þ. Periodically, the
tuples with f þ D � current bucket id will be eliminated
because their frequency upper bounds are less than the
current bucket id ¼ dn0we ¼ "n0. In [34], each time a new
bucket begins to process, we make all tuples decreasing f by
one, then we remove all the tuples whose estimated fre-
quency f ¼ 0. In this algorithm, the space utilization is
Oð1" log ð"nÞÞ. Lossy Counting can find all the heavy hitters
which exceed a proportion of the whole traffic in network
measurement and provides a bounded estimation.

Bloom Filters [49] are used to check whether a packet
belongs to an exited flow, or check whether a flow is a mem-
ber of already known heavy hitters. The most classic bloom
filter [49] was proposed in 1970, and then it has been widely
used to dynamically test whether an item is already exist-
ing. In this bloom filter, a binary array B with initially all
zeros and several hash functions h1; h2; . . .hk are required.
To add an item i as a member, the classic bloom filter needs
to hash item i by these k hash functions to find k bits in
array B and then set these bits to 1. To test whether an item
is a member, it also uses the k hash functions to find the
mapping bits and check them. If all the k bits are 1, the
bloom filter considers it as an existing member, if any bit in
these k bits is 0, the bloom filter determines that the item is
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not a member. This algorithm may cause false positives due
to hash collisions. In practice, bloom filters are always used
in collaboration with other traffic measurement algorithms
to help improve the efficiency and accuracy of measurement
tasks [50].

Count-Min Sketch (CM Sketch) [14] is one of the most pop-
ular sketch-based algorithms to find heavy hitters nowa-
days. It is an over-estimation algorithm but only requires
one memory access for each counter. Count-Min Sketch is
represented by a d� w array of counts with d hash functions
h1; h2; . . . ; hd from ½n� to ½w�. As shown in Fig. 1, for each
input item iwith quantity ci, CM Sketch adds ci to the coun-
ters C½j; hjðiÞ� for all rows j. The frequency estimation ~fi is
also the minimum count among C½j; hjðiÞ�. Setting d ¼ dln 1

d
e

and w ¼ de"e can ensure that ~fi � fi þ "n with probability at
least 1� d. The update time of CM Sketch is Oðlog 1

d
Þ and

the space bound is Oð1" log 1
d
Þ [51]. Simple, efficient operation

and small memory usage with a high accuracy guarantee
make CM sketch becoming a popular traffic counting algo-
rithm in network measurement.

Recall that we divide network measurement methods
into two categories. The above three algorithms can be seen
as the fine-grained measurement methods because they can
check or record all the packets passing through. Although
they are not unique in network measurement, they build an
essential block so that a lot of fine-grained measurement
methods and systems are based on them (e.g., [16], [17],
[35], [36], [52], [53]). However, the function of Bloom Filter
is limited, and simply using counters like Lossy Counting is
not general enough because it still drops too much informa-
tion about traffic. For example, Lossy Counting [6] cannot
get flow cardinality [37] because it only maintains the flows
whose frequency exceeds a specific threshold. In contrast to
Lossy Counting, sketches are more general for different
kinds of measurement targets since they record the volume
of all monitored flows.

Principles for Relevant Work Selection. The research com-
munity has accumulated a lot of research work on network
measurement. A selection is necessary due to the considera-
tions on subject clarity and space constraints. Our principles
for the selection of papers can be summarized as follows :

� We prioritize papers that are published in presti-
gious conferences and journals and highly relevant
work cited in these papers.

� Only fine-grained measurement methods are dis-
cussed in this paper. Coarse-grained methods are
excluded due to their inability to adapt to the rapidly
evolving traffic rates.

� The scope of our discussion is not limited to mea-
surement algorithms. Other research on fine-grained

measurement systems such as measurement lan-
guage [54], multitasking management [55], and mea-
surement data collection [56] are also considered in
this survey.

� For reasons of timeliness, we tend to select related
papers on network measurement in the past five
years.

We present a comprehensive summary of the selected
papers and discuss them from a software-defined perspec-
tive in the next section.

3 SURVEY FINE-GRAINED MEASUREMENT FROM

SOFTWARE-DEFINED PERSPECTIVE

In this section, we will discuss some advanced data struc-
tures, algorithms and systems, which have been proposed
recently to perform fine-grained measurement. First, we
need to introduce the perspective of our survey. We hold
the view that a mature measurement system need to be gen-
eral, flexible and user-friendly. Referring to the idea of soft-
ware-defined networking (SDN), we abstract a fine-grained
measurement system into three-layer architecture, includ-
ing an operation layer, a control layer and an application
layer. As shown in Fig. 2, we organize this section by cate-
gorizing existing fine-grained measurement methods or sys-
tems into this three-layer architecture.

Operation Layer: In the operation layer, specific fine-
grained measurement methods are installed in different net-
work devices’ data plane. They collect the records of each
passing packet so that we can have a clear understanding of
the current traffic characteristics by querying corresponding
data structures. In Section 3.1, we perform a comprehensive
discussion of recent advanced data structures and algo-
rithms which have been proposed to perform fine-grained
network measurement.

Control Layer: In the control layer, a measurement con-
troller selects proper data structures and algorithms to meet
the demands of different measurement applications. Then
these applications’ demands can be seen as many measure-
ment tasks scheduled by the controller. In particular, the
controller is responsible for installing concrete fine-grained
measurement methods in hardware or software devices,

Fig. 1. Overview of CM Sketch [14].

Fig. 2. Overview of software-defined fine-grained measurement
architecture.
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and then balances the trade-off between resources occu-
pancy and measurement accuracy. A mature measurement
system also needs a Device Abstraction Layer (DAL) to
transparently install measurement methods without consid-
ering which type of the device is used. What’s more, mea-
surement data are gathered in the control layer since most
measurement systems use distributed measurement archi-
tecture (e.g., [48], [57]). In multitasking scenarios, the con-
troller also needs to schedule and manage multiple
measurement tasks. Therefore, there are several control
components in the control layer (e.g., Resource Allocator,
Result Collector). In Section 3.2, we discuss several fine-
grained measurement systems, which propose novel mech-
anisms to manage measurement methods and schedule
measurement tasks.

Application Layer: Traditionally, network administrators
need to perform network measurement manually according
to specific management tasks, which is time-consuming and
error-prone. From the software-defined perspective, this
process can be abstracted as a measurement application
running on the application layer. Network administrators
define several measurement applications by user-friendly
interfaces to automatically perform measurement and col-
lect results. In Section 3.3, we introduce several measure-
ment interfaces, and we discuss the requirements of
interfaces for fine-grained network measurement. Note that
concrete measurement applications are not within the scope
of our discussion.

For each layer, we will discuss several state-of-the-art
works in detail. However, some measurement systems do
not only focus on one single layer. We show this phenom-
ena in Fig. 3. For example, OpenSketch [36] not only gives a
novel design of data plane to implement different sketches,
and then automatically manages the sketches with a sketch
manager and a resource allocator, but also provides user-
friendly APIs for administrators to define specific measure-
ment tasks. That means OpenSketch covers all the three
layers. In this survey, we use OpenSketch(C) to represent
the control layer of OpenSketch, while OpenSketch(O) and
OpenSketch(A) are defined as the operation layer and the
application layer of OpenSketch respectively. Other multi-
layer measurement systems are discussed in the same way.
We carefully discuss the different layer’s features of these
multi-layer systems. Most of them can not be discussed sep-
arately because the layers are closely related to each other

[53], [54], [58]. In the next three subsections, we will discuss
recent fine-grained measurement methods and systems in
detail from bottom to top.

3.1 The Operation Layer

In the operation layer, concrete data structures and algo-
rithms are running in different devices to perform various
measurement tasks. Among them, sketch-based measure-
ment methods are widely studied for their versatility, high
performance and ease of deployment. To carry out in-depth
discussions, we broadly divide fine-grained measurement
methods into two categories: sketch-based methods and
other methods (i.e., non-sketch methods).

3.1.1 Sketch-Based Methods

Recall that we briefly introduce the Count-Min Sketch in
Section 2, which is one of the most popular sketch algo-
rithms to perform fine-grained measurement nowadays. A
lot of measurement methods and systems are based on it
(e.g., [15], [18], [48]). However, there are some limitations of
Count-Min Sketch. We list four mainly limitations here:

� Limitation I: Lack of flow key records. In real production
environment, there are numerous flows,which brings
great challenge to record all the flow keys [15], [16],
[52]. Count-Min sketch itself does not record any flow
keys. Users need to provide candidate flow keys to
check frequency, which limits the generality of
sketches.

� Limitation II: Accuracy loss caused by resource conflicts.
When tracking massive network traffic with limited
resources, frequent hash collisions between elephant
flows andmice flows cause serious accuracy loss [38].

� Limitation III: Fixed counter size. All the counters in
Count-Min Sketch are fixed length with fixed count-
ing capacity. While a counter is used to count heavy
hitters, it may overflow. But if a counter is used to
count mice flows, then the high bits of this counter
will be wasted [59], [60].

� Limitation IV: Significant computation overhead. Sketches
need to perform hash computation many times for
each packet, which introduces significant compu-
tation overhead especially for software switches
[53], [61], [62].

Here, we discuss several representative measurement
algorithms or systems in detail, each of which addresses
one or more of the above limitations. Because of the page
limitation, other methods which use similar techniques
have to be discussed briefly.

Deltoids [15] is designed to find heavy changers between
different epochs or switches, and can recover flow keys of
heavy changers, which solves the Limitation I indirectly.
Deltoids is based on Group Testing technology which is
divided into two parts: identification and verification. The
identification finds candidate flows which may be heavy
changers. The verification removes the items from the can-
didate set which are not true heavy changers. The workflow
of Deltoids is shown in Fig. 4. Identification structure is an
extended CM Sketch which requires a� g buckets and a
hash functions h1; h2; . . . ; ha which map ½n� to ½g�. Each

Fig. 3. Layer division of measurement systems.
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bucket represents an item group Ga;g which contains all the
items mapped in it. In practice, each bucket keeps 1þ logn
counter structures Ta;g;t which count item i in Ga;g whose
binary presentation in the tth position is 1. Especially, Ta;g;0

counts all the items in Ga;g. Verification structure needs b�
v buckets and b hash functions s1; s2; . . . ; sb which map ½n� to
½v�, each bucket also represents a group Vb;v with a single
counter. In the update procedure, for each mapped bucket
ða; gÞ of item i, if the binary presentation of i in the tth posi-
tion is 1, Deltoids updates all the counter Ta;g;t with its quan-
tity. Then, Deltoids updates the quantity of i directly to the
sketch of verification. The heavy changers are estimated by
the T structures and verified with V . The space required to
find absolute and relative deltoids is Oð1" log ðnÞlog 1

d
Þ and

the update time is Oðlog ðnÞlog 1
d
Þ. Deltoids addresses Limi-

tation I by recovering flow-key candidates from identifica-
tion part. The sketch in the identification extends each
bucket of CM Sketch from one single counter to multiple,
which requires more memory overhead. In addition, the
counter number in each bucket is related to packet total
number n, which means users need to know the scale of
flow keys to monitor in advance.

Augmented Sketch (ASketch) [17] is a stream processing
framework which uses a separating counting structure to
improve the estimation accuracy. It solves the Limitation II
that mice flows may collide with elephant flows and cause
false positives in Count-Min sketches. ASketch contains two
data structures: filter and sketch. As shown in Fig. 5, the filter
stores frequent items with a new_count and an old_count.
For each item iwith value ci in the incoming stream, ASketch
looks for i in the filter at first. If the item i already exists in the
filter, then it only adds the new_count. If i does not exist in
the filter and filter is not full, it inserts iwith its old_count set-
ting as 0 and new_count as ci. While the filter is full, then the
item iwill be sent to the sketch and do normal update proce-
dure. After inserting the item to the sketch, ASketch com-
pares the estimated frequency ~f of current item cur with the

smallest new_count of the filter. If ~f is larger than the small-
est new_count, ASketch exchanges the items. The cur item
moves to the filter with both old_count and new_count set-
ting as ~f . The removed item remove which has the smallest
new_count is inserted to the sketchwith update value (new_-
count - old_count) since the old_count value is already con-
tained in the sketch since the itemwas last removed from the
sketch. Notice that the exchange is triggered only once
between filter and sketch. Which means, after sketch inser-
tion, if the estimated frequency of remove is larger than the
new smallest new_count of the filter, it won’t trigger one
more item exchange. ASketch uses tuples to record potential
heavy hitters, all tuples are in the filter. Under real-world
datasets, ASketch can achieve 30%� 40% more data stream
processing throughput than single sketches and improve
estimation accuracy by 20 percent due to the skew character-
istic of network traffic: 20 percent elephant flows occupy 80
percent whole traffic. Mainly heavy flows only access the fil-
ter and then the update is done, only 20 percent traffic will
access the second sketch. This separation decreases the hash
collision between heavy flows and mice flows, and the filter
records flow keys of heavy flows as well, which means
ASketch can also address Limitation I.

Counter Braids [59] is a structure using layered counters
to solve Limitation III: all the counters in the sketch are fixed
length with fixed counting capacity. The main goal of this
structure is to save counters bits for mice flows and use
more layered counters to record elephant flows. Counter
Braids uses a low-complexity algorithm based on a graph to
reconstruct flow sizes at the end of a measurement epoch
with essentially zero error. Counter Braids has a layered
structure in which the lth layer has ml counters with the
depth of dl bits, as shown in Fig. 6. Let L be the total number
of layers. In each layer, the number of counters can be
decreasing, because a higher layer means larger flow size
and the number of large flow is limited in networks. Coun-
ters in the low layer contain an additional status bit with ini-
tial value 0, which is set to 1 after the counter overflows.

Fig. 4. The finding procedure of Deltoids [15].

Fig. 5. ASketch architecture [17]. Fig. 6. The structure of Counter Braids [59].
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Counter Braids uses only one set of hash functions to map
flows to the first-layer counters and then map between the
two consecutive layers of counters. For each input item i, all
the first-layer counters it hashed into are incremented. If a
counter c overflows, all the counters in the next layer that c
hashed into are incremented, and the value of counter c is
reset to 0 with setting its status bit to 1. The reconstruction
algorithm decodes these counters from the highest layer to
the lowest and calculates the size of each flow at the end of
each measurement epoch. While decoding, messages (calcu-
lated counter values) pass through the mapping relation-
ships of consecutive layers iteratively and then the flow
sizes can be calculated [59]. Notice that the decoding proce-
dure is only executed at the end of each epoch, and it
decodes all the flow sizes not only the heavy hitters. Thus,
Counter Braids is not an instantaneous function, but it can
recover all flow sizes it has recorded which is useful to mea-
sure flow sizes and flow size distribution in real network
measurement.

SketchVisor(O) is the operation layer of SketchVisor [53],
which is a robust network measurement framework for
high-speed software packet processing. As shown in Fig. 7,
SketchVisor(O) is divided into two components: a normal
path and a fast path. The normal path is deployed with one
or multiple sketch-based solutions, and processes packets
from a bounded FIFO buffer. When the traffic load exceeds
the processing capacity of the normal path and the FIFO
buffer becomes full, SketchVisor(O) redirects overflowed
packets to the fast path where a new top-k algorithm with
low computational overhead is deployed. In the fast path,
each flow f is associated with three counters ðef ; rf ; dfÞ in a
hash table. ef counts the maximum possible bytes that can
be missed before flow f is inserted. rf counts the residual
bytes and df counts the decremented bytes after f is
inserted. The fast path maintains a variable E to count the
sum of all decremented bytes. Same with normal counter-
based measurement algorithms, a first appeared flow f
with size v will be inserted with ðE; v; 0Þ to the hash table
when the table is not full. If f is already in it, SketchVisor

(O) only increases the corresponding counter rf . Otherwise,
the algorithm will calculate a decremented value be, each
flow counter rf in the table decreases by be and each df
increases accordingly. After counter decreasing, the flows
whose rf counter is no larger than 0 will be kicked out from
the hash table. Flow f will be added with ðE; v� be; beÞ if v�
be is larger than 0. The fast path drops some information dur-
ing packet processing so that it is less accurate than the nor-
mal path. To achieve a more accurate measurement, the
normal path should process packets as many as possible,
and the fast path is activated only when it is necessary.
SketchVisor(O) can address Limitation IV by using the dou-
ble path pattern to deal with different traffic speed (i.e., up
to 10Gbps [53]). Also, the double path pattern leads to a
question that a part of packets will be processed completely
but the others will not. Then we think SketchVisor(O) will
cause information loss which means not all the packets exe-
cute the same counting procedure. Fortunately, the control
layer of SketchVisor alleviates this problem by adopting a
recovery algorithm that uses matrix interpolation and com-
pressive sensing to eliminate the extra errors due to the fast
path processing.

NitroSketch [61] is an outer framework for existing sketch-
based algorithms, which aims to reduce the computational
overhead of measurement algorithms in software switches
(Limitation IV). NitroSketch is based on the key property
that software switches have more storage resources, and
then the computation resources become bottlenecks, which
is opposite to hardware switches. The key bottlenecks of
sketches in the software switch include several expensive
hash computations for each packet, multiple random mem-
ory accessing and updating for per-packet processing, and
additional overheads to track top-k flow keys. NitroSketch
has three key ideas. First, samples on the independent
counter arrays of multi-array sketch structure, rather than
sampling on packets. For each packet, NitroSketch “flip a
coin” with a sample rate p for each array while processing
to decide if the counter needs to be updated in this array,
which can reduce the times of hashing and counter updat-
ing. Second, improves coin flips and adopts a geometric
sample way to further reduce computation. When sampling
the counter arrays, flipping coins row by row will introduce
a large computational overhead. The second idea draws
samples from a geometric distribution and can directly
decide which counter array will be updated next and how
many packets will be skipped until this update. Third, to
achieve proper convergence time, the sampling rate is adap-
tive based on the packet arrival rate. Since more packets will
be skipped, the long waiting time is caused to have guaran-
teed accuracy. Thus, with a low packet arrival rate, the sam-
ple rate p can be enlarged to record more packets. There are
two modes of adaptive sampling: 1) AlwaysLineRate mode,
which dynamically sets p to be inversely proportional to the
current packet arrival rate; 2) AlwaysCorrect mode, which
starts with p ¼ 1:0 and switch to AlwaysLineRate mode
once it can guarantee the convergence. We give the total
view of the NitroSketch framework in Fig. 8. Once packets
arrive at the software switch, NitroSketch selects the packet
and the counter array to be updated. As a result, it skips the
majority of packets. The sampled packets can update the
selected counter array(s) based on the updating functions of

Fig. 7. SketchVisor architecture [53].
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different sketch algorithms (e.g., in Fig. 8, the first packet
updates a counter in Array 2. Then, NitroSketch selects the
next updated array which is 21 after the current array.
Then, the 4 packets in the middle are skipped and the last
packet will update the counter in Array 3). Before packet
processing, administrators can choose a sampling mode
according to their requirements. This framework is general
and can apply to any existing sketch structure to boost
packet processing performance without sacrificing their the-
oretical accuracy guarantee. Thus, here we think Nitro-
Sketch still provides fine-grained measurement even if it
uses sampling. NitroSketch can be considered as a supple-
ment of existing systems to reach a high line rate.

These sketch-based methods use several representative
techniques to solve the above limitations. There are many
other sketch-based methods which use similar techniques,
but they have some novel points to solve other specific prob-
lems. For example, SketchLearn [38] not only addresses Lim-
itation II and Limitation III in its data plane (SketchLearn(O))
by adopting similar techniques with the above methods, it
also relieves the burdens of network administrators and sup-
ports extended queries on collected information. We briefly
introduce other sketch-based methods here because of the
page limitation. Count-Min-Heap [63] uses a heap to track
all candidate heavy flows (i.e., can address Limitation I) and
their estimated sums. MV-Sketch [64] is an invertible Sketch
(i.e., can address Limitation I) that supports both heavy hitter
and heavy changer detection and can be generalized for dis-
tributed detection. FlowRadar [65] proposes encoded flow-
sets, which is an extension of Invertible Bloom filter Lookup
Table (IBLT). For each bucket, FlowRadar keeps the packet
count, the number of flows, and the XOR of all different flow
keys mapped in this bucket. Further, FlowRadar can get all
flow keys by performing a decoding algorithm on the
encoded flowsets. SpreadSketch [66] is also an invertible
sketch, but it aims to perform network-wide superspreader
detection. Reversible Sketch [16] addresses Limitation I by
using reversible hash functions to recover the flow keys. Seq-
Hash [67], which is similar to the reversible sketch, hashes
the words of keys to the sketch and reverses heavy keys from
heavy buckets. SeqSkech and EmbedSketch introduced
in [68] can reach nearly zero errors by properly incorporating
compressive sensing theorywith sketch algorithms. Cold Fil-
ter [18] is a separating counting algorithm like Augmented
Sketch [17] but only needs one-direction communication
between the filter and the sketch. It also aims to improve the
measurement accuracy (i.e., can address Limitation II). Pyra-
mid Sketch [60] solves Limitation II and III by using pyra-
mid-shaped data structure to automatically enlarge the size
of the corresponding counters according to the frequency of
current incoming items, which is similar to Count Braids [59]

but is more efficient. Lossy Conservative Update (LCU)
sketch [69] combines the idea of lossy counting (see Section 2)
on top of CU sketch [7], which also divides the stream into
windows and decrements the sketch counters at window
boundaries to reduce the error of over-estimation. Elastic
Sketch(O) [48] also separates elephant flows from traffic like
Augmented Sketch and can be adaptive to bandwidth,
packet rate and flow size distribution. LD-Sketch [52] is an
arrayed sketch structure that combines the counter-based
techniques to solve Limitation I that Count-Min Sketch does
not record any flow keys. It is designed to accurately detect
heavy hitters and heavy changers using distributed architec-
ture. UnivMon(O) [57] uses universal streaming [70] where a
single universal sketch is provable accurate for estimating a
large class of functions. Defeat [71] combines sketches with
the subspace method [72] to detect anomalies, and it can
identify the IP flows(s) that are responsible for the anomaly.
Fast sketch [73] aggregates packets into a few flows with
higher efficiency and reliability, and can be used to find
heavy changers. TCM [74] uses a set of graph sketches which
are graphs with far less size than original graphs to summa-
rize streams and monitor flows, then it can support more
types of graph analytics (e.g., flow paths). Bias-Aware
Sketches [75] proposes bias-aware linear sketches which
strictly generalizes standard sketches in the error guarantees
under biased data streams.ML Sketch [76] improves the esti-
mation accuracy (Limitation II) by introducing machine
learning theory into network measurement. Odd sketch [77],
which is a compact binary sketch, estimates the Jaccard simi-
larity of two sets.

Conclusion of sketch-based methods: As a lossy compression
of all monitored flows, Sketch can support a wide range of
measurement targets. So we can find that most of the
sketch-based methods can get a wide range of measurement
targets by leveraging the generality of Sketch. These sketch-
based algorithms aim to make Sketch more general, more
accurate and more efficient. We make a conclusion of these
methods and their novel points in Table 1.

3.1.2 Other Methods

The sketch-based methods play an important role in fine-
grained network measurement. Besides sketch-based meth-
ods, many non-sketch algorithms use different techniques
to achieve the same goal.

The first class is the counter-based methods like Lossy
Counting (see Section 2). Space Saving [43] aims to avoid
the dynamic memory allocation of Lossy Counting (see Sec-
tion 2) and add frequency estimation to Frequent [33].
HashPipe [78] is based on the SpaceSaving algorithm to
track heavy hitter. Probabilistic Counting of Flajolet and
Martin [79], Linear Counting [80], LOGLOG [81] and
HyperLogLog [82] are used to measure flow cardinality,
especially, HyperLogLog was extended as HyperLogLog
sketch [83] in 2017. Lall et al. in [84] provides two streaming
algorithms to estimate the entropy of network traffic. Zhang
et al. in [85] provides high-resolution measurement to detect
traffic bursts that last tens of microseconds. Mitzenmacher
et al. in [86] and Ben-Basat et al. in [44] proposes methods to
deal with the hierarchical heavy hitter problem. CSE [87] is
designed to detect superspreaders and DDoS based on

Fig. 8. Sketch with the NitroSketch framework [61].
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virtual vectors. Fast hash table [88] improves the perfor-
mance of packet processing.

Since the standard bloom filter (see Section 2) only sup-
ports membership queries, many works have been pro-
posed to improve it. Spectral Bloom Filter (SBF) [89] extends
standard to multiple-sets supporting that allows filtering
the item whose multiplicities are smaller than a threshold.
Invertible Bloom Lookup Tables (IBLT) [90] is designed for
key-value pairs and supports lookups in OðkÞ time where k
is the number of hash functions. IBLT can give accurate fre-
quencies of flow packets in traffic monitoring. Bloom
Tree [91] is also designed for multiple-set membership test-
ing which uses a complete search tree, which can provide
higher accuracy in frequency estimation. Counting Quotient
Filter (CQF) [50] provides a general-purpose approximate
membership query which can handle skewed input effi-
ciently with supporting merges and resizes, thus it is proper
to deal with the skewed traffic flows to give more efficiently
membership testing. Persistent Bloom Filter (PBF) [92] pro-
vides membership testing for the entire recording history,
which is useful in flow tracing.

Some measurement methods use classic mathematical
and statistical theories to achieve fine-grainedmeasurement.
BeauCoup [62] is a query-drivenmeasurement systemwhich
focus on count-distinct tasks(e.g., Superspreader [46]). It is
based on the coupon collector problem and can achieve the
same accuracy as sketch-based algorithms but uses 4x fewer
memory access. Zhang et al. in [30] develops a novel spatio-
temporal compressive sensing framework which can handle
the missing values of traffic matrices and helps to measure
networks more accurately. [31] uses a lossy data structure:

Multi-Resolution Array of Counters (MRAC) to estimate
distribution.

Some measurement systems try to explore the possibili-
ties of different entities (e.g., end hosts, switches, control-
lers) in networks to achieve finer measurement or address
unresolved issues in network measurement. OmniMon [93]
coordinates different entities in data center to achieve the
targets of full accuracy and resource efficiency. LightGuar-
dian [56] is a lightweight in-band telemetry system. When
each packet passes by a switch, the switch will probabilisti-
cally embed one column of a sketch called a sketchlet into
the packet header. Then end-hosts collect the packets
and incrementally reconstruct the original sketch from
sketchlets. cSamp [94] coordinates different routers to
achieve network-wide flow monitoring. NetSeer [95] is a
flow event telemetry system, which is based on programma-
ble switches and aims to discover and record all perfor-
mance-critical data plane events (e.g., packet drops, packet
pause, congestion). Measurement model in [96] and
iSTAMP[97] are based on OpenFlow [98] and TCAM to
build a network measurement framework. NetSight [99]
records packet histories for further traffic analysis. Ping-
mesh [100] is designed to measure and analyze network
latency. The works proposed by Kandula et al. in [101] and
SNAP [102] collect socket-level logs to analysis network.
FlowCover [103], OpenSample [104] and OpenNetMon [105]
provide flow statistics monitoring schemes in SDN.
Planck [106] uses port mirroring to provide millisecond-
scale network monitoring with switch sampling. Ever-
Flow [107] uses “match and mirror” rules to shuffle and fil-
ter packets and then reduces overhead.

TABLE 1
Summary of Sketch-Based Methods in the Operation Layer

Measurement methods Addressed
limitations

Novel points Measurement targets

Deltoids [15] I Recover candidate flow keys Heavy hitter, Heavy changer, Flow size
Augmented Sketch [17] I, II Record part of flow keys and improve estimation accuracy Heavy hitter, Heavy changer, Flow size
FlowRadar [65] I Decode all flow keys from encoded flowsets to provide generality General purpose
Counter Braids [59] III Provide layered counters and minimize memory usage in flow counting Heavy hitter, Heavy changer, Flow size
SketchVisor(O) [53] IV Introduce fast path to accelerate processing speed General purpose
NitroSketch [61] IV Geometric distribution sampling on sketches General purpose
Count-Min-Heap [63] I Record part of flow keys Heavy hitter, Heavy changer, Top-k,

Flow size
MV-Sketch [64] I Return candidate flow keys Heavy Flow Detection
SeqSkech and
EmbedSketch [68]

I, II Reach to nearly zero errors by introducing compress sensing General purpose

SpreadSketch [66] I Return candidate flow keys Superspreader
Reversible Sketch [16] I Recover candidate flow keys by reversible hashing Heavy hitter, Heavy changer, Flow size
SeqHash [67] I Recover candidate flow keys by a novel sequential hashing scheme Heavy hitter, Heavy changer, Flow size
Cold Filter [18] I, II Record part of flow keys and improve estimation accuracy Heavy hitter, Heavy changer, Top-k,

Flow size
Pyramid Sketch [60] III Use pyramid-shaped data structure and minimize memory usage Heavy hitter, Heavy changer, Top-k,

Flow size
LCU sketch [69] II Combine the idea of lossy counting to further reduce the over-estimation

error incurred
Heavy hitter, Heavy changer, Flow size

Elastic Sketch(O) [48] I, II Adapt to bandwidth, packet rate, and flow size distribution General purpose
LD-Sketch [52] I Record part of flow keys and use distributed architecture Heavy hitter, Heavy changer, Top-k,

Flow size
UnivMon(O) [57] - Leverage universal streaming to achieve general and accurate

measurement
General purpose

Defeat [71] - Combine sketches with the subspace method Anomalies detection
Fast sketch [73] IV Aggregate packets into a few flows Heavy changer
TCM [74] - Use a set of graph sketches to summarize streams and monitor flows Graph analytics
Bias-Aware Sketches [75] II Provide error guarantees under biased data streams Heavy hitter, Heavy changer, Flow size
ML Sketch [76] II Introduce machine learning theory in sketches to improve accuracy General purpose
Odd sketch [77] - Propose a compact binary sketch Jaccard similarity

We list the addressed limitations and supported measurement targets of each measurement method. The ‘General purpose’ means the sketch is general for any
given measurement targets.
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Conclusion of non-sketch methods: These non-sketch meth-
ods leverage various theories and techniques to perform
fine-grained measurement. Although these algorithms are
not as general as sketch-based methods, most of them can
achieve higher performance (i.e., more efficiency and more
accurate) for a specific measurement target.

3.2 The Control Layer

With the help of existing novel measurement data struc-
tures and algorithms, we can perform fine-grained mea-
surement with various targets in the operation layer.
However, it’s a hard work for network administrators to
understand all features of these methods. Therefore, we
need the control layer to automatically manage these algo-
rithms and schedule multiple measurement tasks. In this
subsection, we will discuss several measurement systems
which focus on the management of measurement methods
and measurement tasks in different aspects.

DREAM [35] targets at scheduling and allocating current
available resources with different task requirements and
different measurement epochs. It is a TCAM-based soft-
ware-defined measurement system which is designed
according to existing TCAM hardware on switches. Thus, it
can be deployed at networks immediately. In DREAM,
users can submit measurement tasks to the system. The sub-
mitted task should contain four parameters: 1) a flow filter,
which specifying the traffic aggregate; 2) a packet header
field, on which the task event is defined; 3) a threshold,
specifying the threshold volume; and 4) an accuracy bound,
which is specified by the user. For example, users submit a
heavy hitter detection task with the flow filter < 10/8, 12/8,
*, *, *> , a threshold of 1M, the accuracy of 80 percent, and
setting source IP as the packet header field. The details of
the DREAM workflow are shown in Fig. 9. Step 1, the user
instantiates a measurement task and specifies its four
parameters. Step 2, DREAM decides to accept the task or
not according to the available resources. Step 3, DREAM
configures a default number of counters at one or more
switches and creates a task object for the accepted task. Step
4, DREAM fetches counters from the switches and passes
them to the task objects periodically. Step 5, task objects
compute measurement results and report to the user based
on the counters. Step 6, task objects measure the accuracy of
the current task by the accuracy estimator and then send it

to the resource allocator. Step 7, the resource allocator deter-
mines the number of TCAM counters to allocate to each task
object. Task objects use the allocated counters to measure
traffic and can reconfigure the switches (step 3). If a task is
dropped due to the lack of resources, DREAM removes its
task object and de-allocates the counters of this task.
Dynamic resource allocation is the key component of
DREAM. It computes both global accuracy and local accu-
racy to determine whether a task should be allocated with
more resources. For example, if the global accuracy of a task
exceeds the specified bound, there is no need to allocate
more resources even if one of the local accuracy is below.
But if the global accuracy dose not satisfy the bound, the
switches with low local accuracy should allocate more coun-
ters for this task. While allocating resources, DREAM
changes the number of counters by a factor of 2 due to the
diminishing returns. If the task needs more counters,
DREAM allocates it with a double number. Or if the task is
rich and can free some counters, DREAM halves its counter.
Also, operators can specify a drop priority for each task.
Thus, poor tasks with low drop priority are permitted to
steal resources from the tasks with high drop priority. As a
result, tasks with high drop priority may be dropped. For
large switches, DREAM can keep almost all tasks satisfying
without rejecting or dropping. For small switches, it also
can keep high satisfaction but with high rejection. The
DREAM controller can handle many tasks for its high paral-
lelization. Each task can run on a core and each allocator of
one switch can run separately. The delay of the control loop
includes saving the incremental rules, fetching counters,
allocating resources, creating reports, estimating accuracy
and configuring counters, which is less than 20ms with a
512 TCAM capacity switch.

OpenSketch [36] is a software-defined network measure-
ment architecture with a simple, efficient data plane and a
customized analysis controller. Leveraging flexible data plane
design, OpenSketch(C) installs and manages different sketch
algorithms with guaranteed accuracy, then collects and ana-
lyzes measurement data to meet the requirements of applica-
tion layer. OpenSketch(C) builds a measurement library at
the controller which can automatically configure the data
plane with different sketches. Operators are free from under-
standing the complex implementation of switches, which
makes the measurement programming much easier. The
powerful functions of OpenSketch(C) are supported by the
novel design of data plane. As it is shown in Fig. 10, the data
plane contains three stages: 1) hashing, 2) classification, and
3) counting. The hashing stage chooses which set of packets
should be measured, and then can reduce the volume of total
measurement data. The classification stage can focus on spe-
cific flows that are specified by wildcard rules. The counting
stage uses a table of counters to store and accumulate traffic
statistics without flow keys recording to save memory. Thus,
OpenSketch requires complex indexing while it uses hashing
and classification modules. OpenSketch(C) can maintain the
mappings between storage counters and specific flows by
classification-based indexing, or reverse the flows from hash
values by hash-based indexing. By leveraging smart combina-
tions of the three stages, the data plane can support a wide
variety of sketches to meet different measurement require-
ments. OpenSketch(C) provides a sketch library with a sketch

Fig. 9. DREAM system architecture [35].
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manager and a resource allocator. According to the require-
ments of given measurement task, the sketch manager can
automatically pick proper sketches, configure the sketches for
the best accuracy and allocates resources across sketches with
giving provable memory-accuracy trade-offs. The sketch
manager can also automatically install new sketches in the
data plane to learn traffic statistics for better configurations.
The resources allocator can automatically allocate the limited
resources across multiple measurement tasks without consid-
ering the implementation details of each task, it only cares
about the relative importance of these tasks to the operator.
With the resource allocator and the sketch manager, Open-
Sketch(C) can automatically perform the management of
sketches such as sketches choosing, sketch size setting and so
on. OpenSketch(C) has implemented seven sketches in C++
including bitmap, hash table, bloom filter, count-min sketch,
reversible sketch and so on, and the data plane of OpenSketch
has been implemented on NetFPGA. The experiments show
that the OpenSketch prototype switch achieves full through-
put without packet loss on 1GE port, the delay of each mea-
surement component procedure is smaller than the packet
incoming rate even for the 64B packet. However, the data
plane of OpenSketch is a little complex and causes limitation
of packet processing. Under up-to-date 10Gbps, 40Gbps, or
even 100Gbps network links, OpenSketch can not handle the
real traffic.

SCREAM [55] is a sketch-based resource allocation mea-
surement system which can be regarded as an improved ver-
sion of DREAM [35] and overcome some drawbacks:
DREAMuses TCAMmemorywhich is expensive and power-
hungry. Thus, it can not provide numerous counters to sup-
port measurement tasks but relies on the solution of prefix-
based summarization. SCREAM uses sketches to summarize
traffic which can be easily implemented with cheap and
power-efficient SRAM memory. Besides, SCREAM can cap-
ture the right set of flow properties without iterative reconfig-
uration. SCREAM implements sketch-based tasks across
multiple switches, and also enables dynamic resource alloca-
tion with an accuracy estimator. It is inspired by the DREAM
and deliberately reuses the dynamic resource allocator. The
differences between SCREAM and DREAM are mainly in
three points. 1) SCREAM can support sketch-based tasks that
can not be supported by TCAM counters. 2) SCREAM can
assign different sized sketches to different switches for they

may see different amounts of traffic and then merge them.
And 3) SCREAM improves the accuracy estimator of DREAM
to dynamically allocate resources. SCREAM can run multiple
concurrent instances of different task types. It distributes
resources to each task on each switch. Each task queries coun-
ters from switches periodically. According to the traffic obser-
vations, tasks update the sketch parameters based on
allocated resources and then reconfigure their counters. Thus,
SCREAM contains two components: tasks and dynamic
resource allocation. The total architecture of SCREAM is
shown in Fig. 11. Tasks at the controller need to configure
sketch counters at switches, fetch counters and prepare
reports. For different tasks, SCREAM uses different algo-
rithms (e.g., sum,min,max) to merge sketches with different
sizes atmultiple switches. Each task also contains an accuracy
estimatorwhich usesMarkov inequality to calculate the preci-
sion and estimate its accuracy, and then shares its results and
counters periodically. Dynamic resource allocation is the
heart of the SCREAM system, it uses the instantaneous accu-
racy of tasks as the feedback for an iterative allocation algo-
rithm. If the estimated accuracy is smaller than the specified
accuracy bound, the poor task can receivemore resources that
are taken away from rich tasks whose estimated accuracy is
much higher than the bound. The resource allocation order
for poor tasks is based on assigned priorities. If a poor task
can not be allocated, it may be dropped. While traffic skew
keeps changing, SCREAM can support more accurate tasks
than OpenSketch [36] for its dynamic resource allocation.
SCREAM has a higher satisfaction rate with a lower rejection
rate both in single switch and across multiple switches. The
error of accuracy estimator varies with different task types,
but it goes down with larger capacity switches. The experi-
ments show that the error of SCREAM accuracy estimation is
controlled within 5 percent, recall is above 80 percent for all
switch sizes on average.

SketchLearn [38] aims at relieving the burdens of network
administrators and supporting extended queries on collected
information. It characterizes the inherent statistical properties
of resource conflicts, and builds on amulti-level sketchwhich
will infer and extract large flows iteratively to guarantee the
remaining flows are small. The iterative inference is self-
adaptive, and then the configured parameters will have little
impact on the final results, inwhichway the binding between
configurations and accuracy becomes loose. The architecture

Fig. 10. OpenSketch architecture [36].
Fig. 11. SCREAM architecture [55].
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of SketchLearn (Fig. 12) contains a distributed data plane and
a centralized control plane. The data plane contains multiple
measurement nodes each deploying a multi-level sketch and
processes the incoming packet. The control plane needs to
analyze and decompose the multi-level sketch into three
components: 1) the large flow list, which identifies large flows
and records the estimated frequency and corresponding
error; 2) the residual multi-level sketch, which stores the traf-
fic statistics of the remaining small flows; and 3) the bit-level
counter distributions, each of which models the counter
value distribution of each level sketch in the residual multi-
level sketch. SketchLearn uses a multi-level sketch structure
that contains multiple small sketches. Each small sketch
tracks the traffic statistics of a specific bit of the flow key (e.g.,
5-tuple). Suppose l is the bit number of the flow key, then the
multi-level sketch contains lþ 1 levels (level-0 to level-l),
each of which corresponding to a small sketch with r rows
and c columns counters. All the lþ 1 sketches use the same r
hash functions where hi hash function (1 � i � r) maps a
flow key to the jth columns (1 � j � c) in the ith row. Notice
level-0 sketch records all the packets, and other level-k
(1 � k � l) only records the packets whose kth bit of flow key
is 1. Let p½k� describes the probability that the kth bit equals to
one and let Ri;j½k� ¼ Ci;j½k�

Ci;j½0� . The multi-level sketch provides a

key property that if there is no large flow, Ri;j½k� follows a
Gaussian Distribution with the mean p½k�. According to this
key property, SketchLearn builds a conflict model which con-
tains a large flow list and residual multi-level sketch. The
model infers and extracts large flows by examining Ri;j½k�
and its difference from p½k� iteratively, and then removes
large flows from the sketches and adds to the large flow list
until the observed Ri;j½k� fits a Gaussian Distribution well.
SketchLearn supports general traffic statistics and achieves
high accuracy for various measurement tasks, and remains
stable across different configurations. The network-wide
coordination of SketchLearn also performs well. The experi-
ment shows that the measurement accuracy significantly
improves as the number of measurement points increasing.
However, the multiple sketches make SketchLearn requiring
more hashing and more counter updating in the data plane,
whichmay cause performance degradation.

Besides the above systems, there are many other mea-
surement systems which aims to manage the operation
layer. UnivMon(C) [57] generates sketching manifests to
specify the monitoring responsibility of each switch. When
a packet arrives at a switch, the switch uses the manifest to
determine the set of sketching actions to apply. UnivMon
(C) collects the sketch information from switches, and runs
estimation algorithms for every management application.
Adaptive Sketches (Ada-Sketches) [108] provides time
adaptive sketches that dynamically adjust sketch sizes per-
interval and reallocate the limited memory resources as
time passes. Elastic Sketch(C) [48] can globally collect mea-
surement data in an efficient and adaptive way, and it is the
first measurement system that proposes sketch compression
algorithms and merging strategies. SketchVisor(C) [53]
aims at merging the measurement results from both normal
path and fast path. It designs a recovery algorithm that uses
matrix interpolation and compressive sensing to eliminate
the extra errors due to the fast path processing. gSketch [109]
uses the network characteristic which calls Local Similarity
and partitions a virtual global sketch (e.g., CM sketch) of
the entire graph streams to a set of localized sketches to
achieve better performance.

Conclusion of the control layer: In this section, we introduce
several measurement systems which present novel mecha-
nisms tomanage existingmethods in the operation layer.We
summarize the main features of them in Table 2. However,
none of the above methods are sufficient to properly manage
complex and diverse measurement methods. For example,
most of them need users to specify which measurement
methods to use. In addition, they don’t take Device Abstrac-
tion Layer(DAL) into account, whichmeans they are not flex-
ible and adaptive enough for practical networks, which may
consist of different kinds of network devices. Here, we pose
four requirements of the control layer:

� Free network administrators from the burden of
selecting and configuring different (and also diffi-
cult) measurement methods. There are two ways to
achieve this goal. The first is automatically selecting
proper fine-grained measurement methods accord-
ing to specific measurement tasks and underlying
data plane, and the other is using one simple data
structure to perform all kinds of measurement tasks
(like UnivMon [57]).

� Adaptively adjust the trade-off betweenmeasurement
accuracy and resource occupancy according to time-
varying flow characteristics. Parameter configuration
is also a complicated job since there is a tight bind
between measurement accuracy and resource provi-
sion inmost approximatemeasurementmethods.

� Support concurrent execution of multiple measure-
ment tasks. When diagnosing network problems,
single measurement metrics may be not enough.
Network administrators need to perform multiple
measurement tasks concurrently to locate the root
cause.

� Globally merge measurement data and report analy-
sis results to the application layer without occupying
too much bandwidth and memory resources. Mea-
surement tasks may run on different locations of

Fig. 12. SketchLearn architecture [38].
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networks. When the control layer gathers measure-
ment data from multiple switches, it may cause
bandwidth overhead and interfere the normal traffic,
especially for heavy traffic load scenarios.

The control layer is much more important than the opera-
tion layer and the application layer in a network measure-
ment system since it acts as a manager role and is “stuck in
the middle”. We believe that there is still much room for
improvement in the control layer of fine-grained network
measurement. In addition to managing measurement meth-
ods in the operation layer, the controller also needs to sup-
port many applications running on the application layer. In
the next subsection, we will introduce several measurement
interfaces, which can describe measurement demands in
different ways.

3.3 The Application Layer

When facing network management problems, it is difficult
for network administrators to locate the root cause directly.
Network administrators need to perform specific measure-
ment tasks then gather some useful information to solve the
problems. In traditional way, network administrators need
to decide what to measure by their experiences, and per-
form measurement tasks manually, all of which cost a lot
of time. From the software-defined perspective, this process
can be abstracted as a measurement application pro-
grammed by a domain-specific language. In this section, we
introduce several application layer’s languages (or interfa-
ces) proposed in recent years, which can be used to perform
network queries or program measurement applications,
then make network measurement easier and reusable.

Frenetic [110] is a domain-specific language for program-
ming OpenFlow networks, which comprises two integrated
sublanguages: one is a limited but high-level and declarative
network query language, while the other is a general-pur-
pose, functional and reactive network policy management
library. Frenetic is embedded in Python which makes pro-
gramming more convenient. Frenetic query language allows
filtering a set of packets, subdividing the set by grouping on
the header fields, splitting these sets by arrival time or when-
ever a header field value changes, limiting the number of

returned values, and aggregating packets. Then, there are
several main syntactic elements. As shown in Fig. 13,
SelectðaÞ clause aggregates the results using the method a,
where a can be one of the packets, counts or bytes.WhereðfpÞ
clause filters the results and retains the packets which satisfy
the filter pattern fp. GroupByð½h1; . . . ; hn�Þ clause subdivides
the set of packets into subsets based on header fields h1

through hn. SplitWhenð½h1; . . . ; hn�Þ clause also subdivides
the packets into subsets. The difference is that it generates a
new subset each time the value of one of the given fields
changes. For example, if a query splits on the source IP
address, the packet streamwith source IP A, B, Awill be split
into three subsets because that their IP addresses differ from
the preceding. If the stream sequence is A, A, B, then only
two subsets will be generated. EveryðnÞ clause partitions
packets, and the packets which arrive within the same n-sec-
ond window will be grouped. LimitðnÞ clause limits the
number of packets in each subset. The result of a query is an
event streamwhich represents a streamof values. The library
helps to manage packet forwarding policy with functional
and reactive programming. One of the basic operations per-
formed by a Frenetic program is to construct packet-for-
warding rules for installation on switches. Thus, Frenetic
programs create network policies and control the installation
of policies in networks with the library. The query language
of Frenetic defines what kind of packets need to be moni-
tored. This language allows to measure the packets with
some specific field values and only focus on a necessary part
of the traffic while measuring a specific task. This query

TABLE 2
Summary of Measurement Systems in the Control Layer

Measurement systems Novel points

DREAM [35] Design an accuracy estimator and a resource allocator to schedule multiple measurement tasks and
manage the operation layer’s measurement algorithms

SCREAM [55] Manage sketch-based methods with cheap and power-efficient SRAMmemory (compared with
TCAM) and improve the accuracy estimator of DREAM to dynamically allocate resources

OpenSketch(C) [36] Introduce sketch library and provide a sketch manager and a resource allocator to automatically
manage sketches

SketchLearn [38] Resolve resource conflicts automatically by learning sketches’ statistical properties iteratively
UnivMon(C) [57] Formulate tasks, and then assign sketching responsibilities to network elements and present the big

switch abstraction
Ada-Sketches [108] Provide time adaptive sketches that dynamically adjust sketch sizes and reallocate the limited

memory resources
ElasticSketch(C) [48] Collect measurement data by introducing sketch compression and merging strategy
SketchVisor(C) [53] Use matrix interpolation and compressive sensing to eliminate the extra errors due to the fast path

processing
gSketch [109] Partition a virtual global sketch to a set of localized sketches to achieve better performance

We list the novel points of these measurement systems.

Fig. 13. Syntax of frenetic query [110].
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language gives a general filter that can significantly decrease
the scale of packets which then will be processed by sketches
or counter tuples.

Path Query [111] measurement language is proposed not
only for traffic measurement, but also for whole network
monitoring. Narayana et al. in [112] develops a path query
language where operators specify regular expressions over
boolean conditions on packet location and header contents.
The switches in a network are programmed to record path
information in each packet as it flows through. The queries
will be compiled into a deterministic finite automaton (DFA)
whose implementation is distributed across the switches.
The state of DFA is stored in each packet and is updated
when the packet traverses networks. Switches read the cur-
rent state of DFA while receiving a packet, then check the
queries, and write a new state to the packet. A path query
identifies the set of packets with particular header values
and traversing particular locations. The boolean predicate is
a basic part of path query which matches a packet at a single
location and may match on standard header fields such as
srcIP . The predicates can be related to topology. IngressðÞ
can match all packets that enter the network at a specific
ingress interface, egressðÞ then matches all packets that exit
the network at a specific egress interface. Since the set of
packets matching a given predicate may be different at the
switch entry and exit due to headers rewriting or packets
dropping, atoms is used to refine the meaning of predicates.
In atom tests packets as they enter the switch, and out atom
tests them when they leave. In out atomðpred; predÞ tests
one predicate when packets enter, and tests another when
packets leave. Atoms also supports group operation, for
example, in groupðpred; ½h1; . . . ; hn�Þ collects packets that
match the pred at switch ingress, and then divides them into
different groups by the header values ½h1; . . . ; hn�. Out group
and In out group are similar. Path queries can be described
by combining atoms using regular combinators: &, j, � are
standard whichmeans both satisfy, either satisfy, not satisfy,
respectively; ^ is a concatenation that the query p1 ^ p2
specifies a path that satisfies p1 in current switch, the next-
hop switch satisfies p2; � is repetition that p1� specifies paths
that are zero or more repetitions of paths satisfying p1. The
syntax summary is shown in Fig. 14. The packets matching a
query can be counted, sent to a specific port or the SDN con-
troller and so on. Operators also can specify where along a
path to capture the packet that satisfies a query, either
upstream, downstream or somewhere in between.

Marple [54] provides a language that extends Path Query
and can express a large variety of performance monitoring
use cases. With dedicated hardware, Marple language can

get more detailed information of switches like queue length,
packet timestamps of in and out switches. The design goal
of Marple language is not for simple traffic measurement, it
aims to conduct performance analysis across flows it moni-
tored. Marple provides an abstraction of performance infor-
mation of network streams. The streams contain tuples that
record performance metadata such as queue lengths and
timestamps when a packet entered queues. Then, these
streams are recorded as pktstream which are base input
streams. Marple provides one tuple for each packet at each
queue with seven fields: ðswitch; qid; hdrs; uid; tin; tout;
qsizeÞ. switch and qid denote the switch and queue at which
the packet was observed. hdrs can record regular packet
headers, and uid uniquely determines a packet. tin and tout
denote the enqueue and dequeue timestamps of this packet,
while qsize denotes the queue length when the packet is
enqueued. Based on these metadata, Marple provides four
functional constructs: filter;map; groupby; zip, as shown in
Table 3. A filter has the form filterðR; predÞ where R is
some pktstream, the predicate pred can restrict users’ atten-
tion to the interesting packets which satisfy the predicate.
Map has the form mapðR; ½expression�; ½field�Þ that can com-
pute fields to express new quantities of interest. For exam-
ple, mapðpktstream; ½tin=epoch size�; ½epoch�Þ can round the
packet timestamps to a new field ’epoch’. groupby has the
form groupbyðR; ½fields�; funÞ where input stream R will
be partitioned by fields and an aggregation function funwill
operate over each group. For example, groupbyðpktstream;
½5� tuple�; countÞ can count packets belonging to the same 5-
tuple flow. zip with the form zipðR;SÞ can merge fields. The

Fig. 14. Syntax of path query language [111].

TABLE 3
Summary of Marple Language Constructs [54]

Construct Description

filterðR; predÞ Output tuples in Rwhich
satisfy predicate pred

mapðR; ½expression�; ½field�Þ Evaluate ½expression� over
fields of R, emitting tuples with
new field ½field�

groupbyðR; ½fields�; funÞ Partition R by ½fields� and
evaluate function fun over the
partitioned group

zipðR; SÞ Merge fields in tuples ofR and S

Fig. 15. Overview of Sonata [111].
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output of zip operation over two input streams is a single
stream containing tuples that are a concatenation of all the
fields in the two streams.Marple language allows users to fil-
ter the packets which wait for a long time by tout and tin or
which wait in a specific queue. It also provides the usual fil-
tering rules of header fields. Thus, Marple language is
mainly used to monitor network performance, which is an
important usage in trafficmeasurement.

Sonata [111] is a system that allows operators to express
queries using familiar data flow operators(e.g., map, filter,
reduce). It indicates that Maple [54] and OpenSketch [36]
are limited because they execute queries solely in the data
plane, with insufficient memory and poor programmability.
Sonata allows operators to view each packet as a tuple and
expresses queries as operations over tuple streams. It parti-
tions the workload between switches and stream process-
ors, and then refines the configurations iteratively for the
data plane (switches) and the processors to inspect traffic at
a finer granularity. As it is shown in Fig. 15, Sonata compiles
user queries to a set of rules installed in the switches, and
installs processing pipelines at the stream processor. The
packets are treated as tuples that each is a collection of field
values including srcIP , srcMac, srcPort, dstIP , dstMac,
dstPort and so on. Operators can specify whether a particu-
lar operation should execute in the switches or at the stream
processors. For example, operators can apply a filter A at
the switch and apply another filter B at the processor.
Sonata also allows operators to express the logic for refining
queries. The results from ongoing queries can drive refine-
ments to existing queries and then iteratively query refine-
ment occurrences.

Besides the above interfaces, OpenSketch(A) [36] provides
configure and query APIs, which let users perform network
measurement without considering concrete implementation
of sketches. ProgME [113] proposes flowset composition lan-
guage (FCL) to collects traffic statistics based on flowsets.
TPP [114] uses programmatic interfaces and embeds tiny pro-
grams into packets to get network states. Stroboscope [115]
introduces a SQL-like language to extract a traffic sample set
by activating and deactivating traffic mirror for any destina-
tion prefixes.

Conclusion of the application layer: All above measurement
languages or interfaces can describe measurement tasks in
different ways. We give a summary of the application layer
in Table 4. However, all of these languages are not general
enough for all kinds of measurement tasks. More impor-
tantly, they will introduce significant performance loss when

process stateful query operations such as groupby [110] and
reduce [58]. Here, we pose four requirements of measure-
ment languages or interfaces:

� General interfaces to define different kinds of mea-
surement tasks: diverse measurement tasks are
expected to support various management operations,
thereby a general interface framework is needed to
support the definition of all kinds of themeasurement
targets(e.g., Heavy hitter, DDoS).

� Can be compiled to a set of fine-grained measure-
ment methods: it is important because we need to
leverage existing fine-grained methods to perform
network measurement.

� Explicit performance costs before running: it is also
important because some measurement tasks will
introduce significant performance loss inevitably [54].
A notice is needed before network administrator con-
ducting themeasurement tasks.

� Near real-time response time: the response time
includes two parts. The first is introduced by trans-
forming and installing measurement methods, and
the second is how much time the measurement data
can be collected and analyzed. Both of two parts
need to be efficient.

The design of measurement languages or interfaces is an
interesting but challenging topic. For fine-grained measure-
ment systems, more universal and flexible languages or
interfaces are needed.

4 CONCLUSION

In this paper, we present a comprehensive survey of recent
fine-grained measurement methods and systems. We dis-
cuss these methods and systems from the software-defined
perspective. In particular, we categorize existing works into
three layers and discuss current limitations or future
requirements of each layer.

For future directions of fine-grained network measure-
ment, we believe that the control layer have much more
room to improve. Compared with other network opera-
tions, the conducting process of network measurement is
still original, especially for measuring high-speed networks
in a fine-grained and dynamic way. The absence of a power-
ful control plane for fine-grained measurement is the major
reason. The measurement interface can be regarded as a fol-
low-up production since it is compiled and conducted by

TABLE 4
Comparison of Measurement Languages

Language Usage Requirements

Frenetic [110] Filter packets with specific field values Python language
Path Query [112] Path tracing of packets Program Switches with the Path Query functions
Marple [54] Network performance monitoring Switches with programmable KV-store
Sonata [111] Network performance monitoring Programmable switches and stream processors
ProgME [113] Group packets to arbitrary set of flows A binary decision diagram (BDD)-based data structure

and Flowset-based Query Answering Engine (FQAE)
TPP [114] Collect packet history NetFPGA with TPP
Stroboscope [115] Mirror and analyze traffic Switches which support mirroring

We summarize the usage and the requirements of these languages.

ZHENG ETAL.: RETHINKING FINE-GRAINED MEASUREMENT FROM SOFTWARE-DEFINED PERSPECTIVE: A SURVEY 3663

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on March 15,2023 at 10:02:42 UTC from IEEE Xplore.  Restrictions apply. 



the corresponding controller. Last but not least, more effi-
cient and accurate measurement algorithms are always
needed to satisfy both old and new measurement demands
in the operation layer.
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