SMART: Screen-based Gesture Recognition on Commodity Mobile Devices

Zimo Liao¹, Zhicheng Luo², Qianyi Huang^{2,5}, Linfeng Zhang³, Fan Wu¹, Qian Zhang⁴, Yi Wang^{2,5}

Shanghai Jiao Tong University¹

Southern University of Science and Technology2Tsinghua University3Hong Kong University of Science and Technology4Peng Cheng Laboratory5

MobiCom 2021

In-air gesture control is natural and contactless

Gesture control via hardware on mobile devices

Gesture control via hardware modification

Can we support in-air gesture recognition on legacy devices without hardware modification?

Can we support in-air gesture recognition on legacy devices without hardware modification?

What is the relationship between the received light power and the hand gesture?

Model the "Screen-Hand-ALS" channel

Calculate received power

The fundamental working principle of SMART

Screen's refresh rate limits modulated frequency

Refresh time per frame	$t(=\frac{1}{f_r})$	2 <i>t</i>	3 <i>t</i>	 nt
Frequency	f_1	$\frac{f_1}{2}$	$\frac{f_1}{3}$	 $\frac{f_1}{n}$

Lower frequency

Higher frequency light signals are needed since human eyes are sensitive to low frequency flickering

Transmit high frequency signal

Hide signals in the screen content

Color decomposition of each pixel

Color space: RGB -> CIE 1931

Color decomposition of each pixel

Color space: RGB -> CIE 1931

Color decomposition of each pixel

Color space: RGB -> CIE 1931

Edge smoothing

Relieve phantom array effect

Signal received by ALS is low-quality

Segmentation according to reflected power

Segmentation according to reflected power

Segmentation according to reflected power

Signal pre-processing and classification

Signal pre-processing and classification

Feature extraction & Classification

Gesture recognition

Evaluation

• Prototype

- Transmitter: iPad Pro 11;
- Receiver: TEMT6000(250Hz);
 Arduino Due;

• Experiment setting

- 9 gestures;
- 8 users;
- 5 static & 2 dynamic lighting environments;

Evaluation

Prototype

- Transmitter: iPad Pro 11;
- Receiver: TEMT6000(250Hz); Arduino Due;
- Experiment setting
 - 9 gestures;
 - 8 users;
 - 5 static & 2 dynamic lighting environments;

Accuracy v.s. Different users

SMART is a generic model.

Accuracy v.s. Different lighting environments

Accuracy v.s. Unseen lighting environments

leave-one-out 10-fold

User perception

15 volunteers, 6 different images

Power consumption comparison with depth camera

Power consumption comparison with depth camera

SMART's power consumption is lower than depth-camera

Thanks for your attention! Q&A