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Abstract—Mobile sensing enables unobtrusive monitoring of
our daily activities, sleep quality, breathing and heart rate,
revolutionizing the health-care system. Dietary information is
also a critical dimension for health management but has no
convenient solution yet. In this paper, we ask whether we can
track meal composition unobtrusively. We introduce Smart-
U, a new utensil design that can recognize meal composition
during the intake process, without user intervention or on-body
instruments. Smart-U makes use of the fact that light spectra
reflected by foods are dependent on the food ingredients. By
analyzing the reflected light spectra, Smart-U can recognize
what food is on top of the utensil. We describe the prototype
design of Smart-U and the food recognition algorithm. We
demonstrate that Smart-U can recognize 20 types of foods with
93% accuracy. It can work robustly under different conditions.
We envision that Smart-U can enable automatic food intake
tracking, and provide personalized food suggestions based on
nutrient recommendations and prior consumption. In the long
run, Smart-U can contribute to the study of chronic diseases.

I. INTRODUCTION

The past decade has seen a surge of interest in daily activity

monitoring. Nowadays, smartphones and smart watches can

monitor our exercise [1], [6], sleep quality [27] and even

mental states [24]. With recent development in technologies,

we envision that health-monitoring techniques can go further

to monitor what we are eating. This information can be used

to improve our health with self-awareness. With this dietary

information, we can answer questions like “Does my child get

enough nutrients today?” or “How much exercise is needed

to burn the calories I consumed?” Furthermore, if we can

monitor food intake over a long term, it could enable doctors

and nutritionists to study how chronic diseases are related to

dietary habits and provide food suggestions for the population.

In this paper, we ask whether it is possible to track what

foods are consumed in an unobtrusive and detailed manner.

Unfortunately, existing techniques for monitoring food intake

are not suitable for this purpose. Computer vision [23], [33]

and on-body [25], [31] devices has been applied for automatic

diet monitoring. However, they have limited capabilities in

recognizing meal composition. They mainly focus on coarse-

grained food recognition, and they cannot provide detailed

dietary information, such as distinguishing between whole

milk or skimmed milk. Past research has also studied the

feasibility of monitoring dietary behavior by instrumented

objects and places, such as smart forks [8], [21] and a smart

tablecloth [37]. They typically detect eating-related actions

(e.g., stirring and cutting), and distinguish general meal types,

such as having the main dish, soup or salads, without concrete

information on what food is consumed. Thus, there is no

convenient solution for dietary tracking yet.

In this paper, we introduce Smart-U, a new method for

tracking meal composition. Smart-U are utensils with food

recognition capability. Smart-U does not require the users to

wear any on-body devices or perform any extra actions. It

recognizes what foods are consumed by the users during the

intake process. Furthermore, Smart-U can work with many

types of utensils, such as spoons, glasses, and dishes. It can

recognize both solid and liquid foods.

Smart-U works by analyzing the light spectra reflected by

the foods on the utensils. Specifically, Smart-U contains an

array of LEDs, including both near-infrared (NIR) bands and

visible light bands. Smart-U modulates the LEDs sequentially

and captures the spectra reflected by the foods, which depends

on the chemical properties of the foods [28]. By looking at

the reflected light spectra, Smart-U can infer what foods are

placed on the utensils.

However, there are three main challenges in achieving

this. The first challenge is that various eating environments,

especially the ambient light conditions, would interfere the

light spectra we get. We address this challenge by investigating

how ambient light would affect foods’ light spectra. It turns

out that ambient light and food reflected light are combined

linearly at the receiver side, i.e., the photodiode. Thus we can

cancel out the ambient light interference by taking the ambient

light off the total light intensities. The second challenge is to

minimize disturbance of LEDs to users’ eyes. We tackle this

by first using NIR LEDs to detect whether there are foods

placed on top of the utensils and only turn on visible light

LEDs when foods are covering the LEDs. In this way, LED

lights are blocked by the foods and will not penetrate directly

into human eyes. The last challenge is how to recognize

foods and nutritions. We handle this challenge by designing

lighting patterns for LEDs and build machine learning models

to predict food category and nutrients.

We build prototypes of Smart-U in the form-factors of a

spoon and a glass. We test their performance under various

conditions. Experiment results show that Smart-U can reliably

detect food presence and recognize 20 types of food with

93% accuracy. Smart-U can work robustly under different

temperatures, lighting conditions, and when in motion. Smart-

U can also recognize 6 types of drinks with high accuracy. We

also take the primarily attempt to predict nutrition information

in milk and recognize mixed foods. We believe that Smart-U

moves a significant step toward automatic dietary monitoring



that enables people to track their meal composition and has a

significant impact on our health-care system.

We summarize our contributions as follows:

• We propose a new method, Smart-U, for food recognition.

Smart-U integrates an LED array and works by analyzing

foods’ reflectance profiles. It can recognize meal compo-

sition unobtrusively during the intake process and can

work with many types of utensils.

• We present the design of Smart-U, including both pro-

totype design and food recognition algorithm. To make

Smart-U a user-friendly utensil, we handle ambient light

interference and minimize the disturbance to human eyes.

• We build two prototypes of Smart-U, a spoon and a

glass, and conduct extensive experiments to test the

performance of Smart-U. It can recognize up to 20 types

of food with 93% accuracy and can work robustly under

various conditions.

The rest of the paper is organized as follows. In Sec-

tion II, we present the theory of spectroscopy. We describe

the prototype design in Section III and algorithm design in

Section IV. Implementation details can be found in Section V

and experiment results are shown in Section VI. We summarize

existing literature in Section VII and discuss some remaining

issues in Section VIII. Finally are the conclusion remarks.

II. THEORY OF OPERATIONS: SPECTROSCOPY

In this section, we will briefly introduce spectroscopy, which

is the working principle of Smart-U. To make it simple, we

will discuss diatomic molecules here. For the more compli-

cated cases of polyatomic molecules, readers may refer to [17].

A diatomic molecule is vibrating as two masses on a spring,

as shown in Figure 1. Its potential energy is defined as

V =
1

2
kx2,

where k is the force constant of the bond and x is the

displacement from the equilibrium internuclear distance. Its

natural frequency is

v =
1

2π

√
k

mr
, where mr =

m1m2

m1 +m2
.

In the example of Figure 1, m1 and m2 are the masses of the

carbon and hydrogen atoms, respectively. The corresponding

energy levels are

En = (n+
1

2
)�v, n = 0, 1, 2, 3, · · · ,

where � is Planck’s constant.

Light can be thought of as a stream of photons. The energy

of a photon is

Ep =
�c

λ
,

where λ is its wavelength. When a molecule absorbs a photon

of light, its energy will escalate to a higher level. Absorption

Fig. 1. A diatomic molecule is vibrating as two masses on a spring.

must obey the law of conservation of energy, that is, the

increased amount of bond energy must be equal to the energy

of the absorbed photon, i.e.,
Ep = ΔEn1→n2

.

It indicates that a bond will absorb photons of specific wave-

lengths.
Figure 2 shows the possible energy transitions. The domi-

nant one is the fundamental transition, i.e., n = 0 → n = 1.

Transitions from n = 0 → n = 2, 3, 4, · · · are called

overtones. Other allowed bands such as n = 1 → n = 2,

n = 2 → n = 3 are called “hot bands” [17]. For the

fundamental transition, light of wavelength λ = �c
ΔE0→1

is

absorbed. For other transitions, the light of corresponding

wavelengths is absorbed. This results in many absorption

peaks in the light spectrum. As different foods have different

ingredients and thus different chemical bonds, foods can be

distinguished by their light spectra.

Fig. 2. Vibrational energy levels and possible transitions for a diatomic
molecule.

The conventional method to obtain a light spectrum is

shown in Figure 3. Light from a light source passes through

a focusing and collimating lens, reaches the food samples.

We can either observe the transmitted or reflected light. Here

we show the latter case. A diffraction grating separates the

reflected light into different beams, such that we can obtain

the light intensity for each wavelength.

Fig. 3. Conventional spectroscopy system.

The whole system is very bulky. The best case is a handheld

food scanner, such as NIRQuest512 from Ocean Optics [10]

and TellSpec [13]. In this study, our goal is to miniaturize

each component such that it can be integrated into a utensil

and consider the various usage scenarios. Details can be found

in Section III and Section IV.



III. SMART-U: PROTOTYPE DESIGN

In this section, we briefly introduce how we build the Smart-

U prototype from two aspects: the light source and the receiver

circuit.

A. Light source

As Figure 3 shows, conventionally, we need a light source,

which generates light covering a broad spectrum, and a

diffraction grating to separate the light into beams. This makes

the whole system hard to miniaturize. We notice that we

can replace the light source with an LED array. LEDs have

several advantages. First, we can control the LEDs such that

only one LED is on each time. In this way, we no longer

need a diffraction grating, which saves us a lot of space.

Second, LEDs are available in a wide range of wavelengths,

including the UV, visible and infrared regions. We can select

the wavelength that can provide us useful information. Third,

LEDs have tiny footprints. A PCB of 2 cm2 can mount tens

of LEDs.

As our goal is to miniaturize the whole system, we need

to select LEDs of wavelengths that can provide us critical

information. As many commercial NIR spectrometers [10],

[13] cover the wavelength ranging from 900 to 1700 nm,

we select 8 off-the-shelf LEDs spreading out in this range.

In addition, we add 4 LEDs in the visible light bands into

the LED array, as we believe that visible bands can also

help to distinguish foods. They are red, blue, green, amber,

respectively.

B. Receiver

To detect the intensities of reflected light, we use photo-

diodes as receivers. Photodiodes absorb photons and convert

light into electrical current. As photodiodes usually produce a

tiny amount of current, in the order of nanoamperes, we need

an amplifier circuit to amplify the current so that we can get

useful readings. The circuit is shown in Figure 4. Here we use

the photodiode in the unbiased mode, as it is more sensitive

in the unbiased mode than in the reverse biased mode. The

amplifier keeps the voltage across the photodiode zero, i.e., in

the unbiased mode. The feedback resistor converts the small

photocurrent to a voltage that we can measure at the amplifier’s

output.

Fig. 4. The amplifier circuit for photodiodes.

As a photodiode covering the full range from 400nm to

1700nm is very expensive (about $120), we use two separate

ones, one from 300nm to 1100nm to cover the visible light

bands and the other from 800nm to 1700nm to cover the NIR

bands.

IV. SMART-U: RECOGNIZING FOODS

In this section, we will present how we recognize foods

using Smart-U. We first present how Smart-U cancels ambient

light interference, and then describe how Smart-U detects food

presence. After that, we show how Smart-U recognizes foods

and nutrition.

A. Ambient light interference cancellation

When there is food on the utensil, the light intensity received

by the photodiodes, denoted by nT , indeed comes from four

sources. First is the ambient light that penetrate through the

food and reaches the receiver side, denoted as nA; second is

the direct path between the LEDs and the photodiode, denoted

as nD; third is the LED light reflected by the circuit board,

surface of the utensils, and other instances (excluding food),

denoted as nR; last is the LED light reflected by the food,

denoted as nF , which is the information that we intend to

get. As the distance between the transmitter (LEDs) and the

receiver is fixed, nD is constant. Similarly, when the geometry

of the circuit board and the utensils is fixed, nR is also

constant. However, ambient light could be changing and how

it affects foods’ light spectra is unknown.

To study how ambient light affects foods’ light spectra,

we use a Yeelight Bulb from XiaoMi [14] to mimic various

lighting conditions. We change the light intensity of bulb from

0 to 100%. We put a slice of beef on the utensil and obtain

readings from the receiver. Results are shown in Figure 5.

In Figure 5(a) we can see that when there is no LED on,

due to the increasing ambient light intensity, we get linearly

increasing readings. When the LED is on, the readings increase

by an offset. In Figure 5(b), we plot the offsets for three LEDs.

We can see that the offsets are almost constant. It indicates

that nF will not change with the ambient light.

Smart-U cancels out the interference of ambient light by

taking nA off nT . We can obtain nA when there is no LED

on, and the only light source is the ambient light. As it’s hard

to obtain nF directly, we can get

n′
F = nT − nA, (1)

which is a combination of nF , nD and nR, where the last two

are constant. In this way, Smart-U cancels out the interference

of ambient light.

B. Food detection

The second step is to detect whether there is food on top

of the utensil. This serves two purposes. First, the spoon only

needs to carry out food recognition procedure when there is

food on the utensil so that it can save battery power; Second,

as we have 4 visible-light LEDs on the LED array, which

may cause disturbance to users’ eye. Thus, we only turn on

visible-light LEDs when there is food on top of the utensil

so that light is blocked by the food and will not go directly

into users’ eye, causing any unpleasant user experience. We



20% 40% 60% 80% 100%
Ambient light intensity

0

100

200

300

400

500

Ph
ot

od
io

de
 re

ad
in

gs

No LED on
LED 1 on
LED 2 on
LED 3 on

(a) Raw photodiode readings.
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(b) Offset of Photodiode readings.

Fig. 5. We show that ambient light and food reflected light combine linearly at the receiver side.
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Fig. 6. We compare the NIR intensities
with/without food.

use two thresholds for food detection, NIR intensity and time

thresholds.

NIR intensity thresholding
We rely on NIR LEDs and photodiode for food detection.

We use l to denote the light intensity received by the NIR

photodiode. Smart-U turns on a NIR LED and continuously

tracks the readings of l. When there is no food on the utensil,

little amount of emitted NIR light is reflected back to the

receiver. Thus, l has a small value. When there is food on the

utensil, a large portion of emitted light is reflected. Thus, l has

a large value. We test under three ambient light conditions:

indoor environment with no light, indoor environment with

fluorescent lights on, and under sunlight. We keep the utensil

empty and repeat 200 times under each condition. We also put

20 types of foods on the utensil and conduct the test under the

three environments. Figure 6 shows the comparison between

with/without food cases.

From Figure 6, we can see that, as we have already canceled

out the influence of ambient light, l is rather stable when there

is no food. The values fall within a small range. However,

when there is food on top of Smart-U, the values of l vary a lot.

The value depends on the food ingredients. We further perform

t-test on these two sets of data. We get P < 0.001, indicating

statistically highly significant difference between the two data

sets. Thus, we can set a threshold Γl to discriminate these two

cases.

Time thresholding
Using only a NIR intensity threshold can lead to false

positives. When there is no food, according to our observation,

there could be short instants that l rises above Γl due to

hardware imperfection. Thus, we further add another threshold

in the time dimension, Γt. Only when l is above Γl for at least

a duration of Γt, Smart-U confirms the presence of foods.

C. Recognizing Foods and Nutrition

1) LED Lighting Pattern: On Smart-U, we have 12 LEDs

on the LED array. Smart-U turns on the LEDs one by one. For

each LED, Smart-U changes both its duty cycle and frequency.

Specifically, Smart-U first sets the flicker frequency of an

LED and changes its duty cycle (0, 0.25, 0.5, 0.75, 1); then

it fixes the duty cycle and changes the flicker frequency (3
frequencies). This lighting pattern is repeated for all the 12
LEDs.

Each combination of flicker frequency and duty cycle lasts

for 15 milliseconds. Thus it takes about 1.5 seconds to

complete the lighting sequence.

2) Feature extraction: Before performing food classifica-

tion, we first extract related features.

For each lighting pattern (a combination of flicker frequency

and duty cycle), Smart-U computes the average and standard

deviation of [n′
F,t=1,2,···]. For one LED, we have 16 features.

Thus, there are 192 features in total.

3) Recognition: After extracting food features, we perform

food classification.

Recognizing single food
Among many popular classification algorithms, Smart-U

builds a Random Forest food recognition model. This is

because Random Forest has a lower risk of overfitting by

averaging over many trees and is therefore more accurate. The

model takes 192 features as input and outputs the food label

with the highest probability.

Recognizing nutrition information
After we obtain the label for the food, we proceed to

recognize the nutrition information in the food. In this paper,

we only consider predicting nutrition information in milk. It

would be our future work to generalize to other foods.

We consider three nutrients: protein, fat, and carbohydrate.

Given that they are all milk, their light spectra are very

similar with only slight differences. We need to emphasize on

the variation in spectra. Thus, we use Principal Component

Analysis to find the components with large variance. Then

we build a regression model for each nutrient, with the

principal components as predictors and nutrient content as the

response value. Thus, we obtain three regression models, each

corresponding to one nutrient.

Recognizing mixed foods
We further consider that the food on the utensil may be

a mixture, for example, a mixture of milk and cereal. When

doing food classification, we have no idea about how many

types of foods there are on the utensil. There may be N types

of foods, where N is an unknown number. This is a typical

problem of multi-label classification. We select the state-of-

the-art multi-label classification algorithm, Random Forest of

Predictive Clustering Tree (RF-PCT) [22], as previous studies

point out that RF-PCT has high prediction accuracy and



Fig. 7. A spoon example of Smart-U. In the left figure, we compare the size
of Smart-U with a normal spoon; right top is the side view and right bottom
is the top view.

low complexity [26]. The RF-PCT model will output all the

possible labels for the foods.

V. IMPLEMENTATION

In this section, we introduce the implementation details.

3D printing Smart-U prototype: We design the 3D utensil

model using the online tool, Tinkercad. The model is printed

using transparent photopolymer resin. We place an opening

underneath the utensil for holding the circuit board. The

opening is 23mm (Long) ×12mm (Width) ×5mm (Height) in

size. The total weight of the spoon model is 8g. Light comes

from underneath the utensil and reaches the surface of the

food, and then reflected back to the photodiode.

Circuit Design: We fabric the LED array and the receiver

circuit on a two-layer print circuit board. The LEDs and pho-

todiodes are on the top layer. The wavelengths for the LEDs

are 470nm (blue), 525nm (green), 592nm (amber), 625nm

(red), 860nm, 940nm, 1050nm, 1200nm, 1300nm, 1450nm,

1500nm and 1650nm. For the components in Figure 4, we use

an AD8505ARJZ-R7 amplifier from Analog Device, a 820kΩ
resistor and a 30pF capacitor. The two photodiodes are from

Luna Optoelectronics. Their part numbers are SD012-151-001

and SD040-101-411CT-ND, respectively.

Control Unit: The LED array is controlled by an Arduino

Mega [2]. The default flicker frequency and duty cycle are

122Hz and 50%. We first fix the flicker frequency and change

the duty cycle among 0%, 25%, 50%, 75% and 100%. Then

we fix the duty cycle and change the flicker frequencies

among three values. The default frequency on Arduino Mega

is 31250Hz, and we divide the frequency by 1, 64 and 256.

Figure 7 gives photos of our prototype, in the form-factor

of a spoon. We also build a glass prototype by attaching the

circuit to a transparent Polypropylene glass. Other utensils,

such as dish and bowl, can be designed similarly.

VI. EVALUATION

In this section, we show the evaluation results. We first

show the results for food detection and food recognition, and

then evaluate the effects of many factors, including ambient

light, temperature, and movement. Last, we show the results

for recognizing drinks, nutrients in milk and mixed food. The

majority of tests are performed using the spoon prototype.

A. Food Detection Accuracy

We implement the food detection algorithm on an Arduino

Mega and test with four types of foods: pork slice, black

pepper beef, carrot, and almonds. We put the food on the

spoon and see whether Smart-U detects the presence of food.

We do the experiments under four lighting conditions: indoor

environment with lights off on a rainy day, indoor environment

with a fluorescent light on, indoor environment with an LED

lamp on, natural sunlight on a sunny day. We repeat 10 times

for each type of foods. Results are shown in Figure 8.

We can see that the detection rates are very high. Miss

detections only happen when the food is placed at the corner

of the spoon. As we can see in Figure 7, some parts of the

spoon surface cannot be covered by the receiver on the PCB.

When the food is small in size, e.g., almonds, Smart-U may

miss detecting its presence. This problem can be solved by

adding more receivers on the spoon so that the whole utensil

surface can be covered.

We also want to see whether Smart-U would give false

positives. We put the empty spoon in each environment for

about half an hour. Although there are some instants that l
raise above Γl, these moments are marked as false alarms by

the time threshold. Thus, during a total duration of two hours,

there is no false positive. We also swing our hands over Smart-

U to see whether it would trigger false alarms. We notice that

only when hands are about 1 cm above the spoon, it will give

the false alarm. When hands rise to 2−3 cm above the spoon,

Smart-U will not trigger false alarms.

B. Recognizing Foods

In this subsection, we show the accuracy for Smart-U to

recognize foods. According to the Australian Guide to Healthy
Eating [3], we prepare 20 types of foods, covering the five

categories of foods in the food selection guide. There are:

1) Rice, muesli, bread, wheat biscuit.

2) Dried pork slice, black pepper sliced beef, satay pork,

satay beef.

3) Mango, apple, grapefruit, banana, dragon fruit, carrot.

4) Almond, peanuts, cashew, jujube.

5) Scrambled egg, yogurt.

For each type of food, we prepare 10 food samples. We

compare 5 commonly used classification algorithm: Decision

tree, Naive Bayes, SVM, k-NN and Random Forest. We

vary the percentage of training/testing data and compare their

accuracy. The results are shown in Figure 9. From Figure 9 we

can see that Random Forest outperforms the other 4 classifiers,

indicating that Random Forest is a good choice for food

recognition.

We use 50% of data for training and the remaining 50%
for testing. We show the confusion matrix in Figure 10. The

overall accuracy is 93%. We notice that the majority of errors

occur among the same category of foods. Take satay pork

and satay beef for example. They are both meat and have

been processed using the same method. Thus they are hard to

distinguish. The same is also true for peanuts and cashews.
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Fig. 10. Confusion matrix for recognizing 20 types of foods. The overall accuracy is 93%.

We show their pictures in Figure 14. From the figure, we can

see that they are very similar in appearance.

If Smart-U does not include the four LEDs in visible light

bands, the accuracy drops to 67.5%, indicating that visible

light bands are beneficial for food classification.

C. Effects of Ambient Light

Here we test the performance of Smart-U under different

lighting conditions. The four lighting conditions are the same

as in Section VI-A. We use the Random Forest model trained

in Section VI-B to classify five types of foods: rice, pork, ba-

nana, carrot, and almond. The results are shown in Figure 11.

The accuracy under sunlight (0.88) is a little bit lower than

the other three cases. This is because, under intense sunlight,

some readings from the photodiodes are saturated. This would

be solved by using an adjustable feedback resistor in Figure 4.

Smart-U could dynamically adjust the amplifier gain according

to the intensity of ambient light, i.e., use a large gain to achieve

better sensitivity in a dark environment and use a small gain

to avoid saturation in a bright environment. The accuracies in

the other three conditions are all above 0.92.

D. Effects of Temperature

In this subsection, we show how temperature would affect

the performance of Smart-U. We cool foods by putting them in

the refrigerator and heat foods using a microwave. According

to common practice, we test yogurt, mango and apple by

putting them in the fridge and heat rice, sliced pork and sliced

beef using a microwave. The results are shown in the first two

bars in Figure 12. In these two cases, the accuracies are 0.93
and 0.9, respectively.

The above experiments are conducted in an environment

with stable room temperature, ranging from 25◦C to 29◦C
with the average at 27◦C. We want to see whether Smart-U

can work robustly under extreme weather condition. So we

put the spoon in the refrigerator to cool it down, mimicking

an environment with low room temperature. The results are

shown as the third bar in Figure 12. The errors come from

the confusion between pork slices and satay pork. They are

both pork just with different processing methods, and thus it

is difficult to distinguish them. This two sets of experiments

show that Smart-U can work robustly under different food and

environmental temperatures.

E. Effects of Movement
As Smart-U takes about 1.5 seconds to obtain the light

spectra of foods, we want to see whether motion during this

period would affect the performance. We hold the spoon and

mimic the hand motion of bringing food to the mouth. We

test five types of foods: rice, sliced pork, banana, almond, and

yogurt. The average accuracy is 0.92. One sample of banana

is confused with apple, mainly for that they are both fruits

thus share some similarity in ingredients. Another sample of

banana is confused with scrambled egg, maybe due to their

similarity in color (light yellow).

F. Recognizing Drinks
In this subsection, we show that Smart-U can also recognize

drinks. Here we prepare 6 types of drinks: water, tea, coffee,
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Fig. 13. Confusion matrix for 6 types of drinks.

(a) Satay pork. (b) Satay beef. (c) Peanuts. (d) Cashews.

Fig. 14. Some food samples. Satay pork and satay beef look very similar.
The same is true for peanuts and cashews.

milk, carrot juice and soy milk. We perform the test with the

glass prototype. We prepare 10 samples (about 25ml) for each

drink, 5 samples for training and 5 samples for testing. The

results are shown in Figure 13.

4 samples of tea are confused with water. This is because

the tea samples are made using a tea bag. The first few samples

are strong and the following samples become weak gradually.

Thus, the last 4 samples are confused with water. We verify

this by preparing 5 new samples of tea, made with a new

tea bag. All the 5 new samples are correctly classified as tea.

Results show that Smart-U can recognize 6 types of drinks

with high accuracy.

G. Predicting Nutrition Information

In this subsection, we show the results for predicting nu-

trition information in milk. We buy five types of milk from

a local supermarket and read their nutrition information from

food package. Their information are shown in Table I.

TABLE I
NUTRITION INFORMATION IN 5 TYPES OF MILK. THE NUMBER IS IN

GRAMS FOR EVERY 100ML SERVING.

Milk Protein Fat Carbohydrate
Whole milk (Brand 1) 3.2 3.9 5.2

Hi-Calcium Whole Milk (Brand 1) 3.2 3.7 5.1
Hi-Calcium Low Fat Milk (Brand 1) 4.3 1.4 7

Hi-Calcium Chocolate Milk (Brand 1) 2.4 1.4 10.8
Whole milk (Brand 2) 3.26 3.64 4.62

We obtain 10 samples for each type of milk and use 5
samples from the first four types to build the regression model

and test on the remaining samples. The predicted results are

shown in Figure 15. We can see that the predicted values have

a high correlation with the actual values. The deviations from

the real values are 2.7%, 8.2% and 1.6% for protein, fat, and

carbohydrate, respectively. For the unseen samples (Type 5),

the deviations are 9.7%, 19.3%, 3.5%. In this study, we only

consider these three nutrients, and it is our future work to

examine the concentration of minerals.
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Fig. 15. Predicted results for the three nutrients in milk.

H. Recognizing Mixed Foods

In this subsection, we show the results for identifying mixed

foods. We prepare five types of foods: pork slice, black pepper

beef, almond, peanut, and cashew. In total we get 9 cases: 5
pure cases, one for each type, and 4 mixed cases: pork & beef

mixed, almonds & peanuts mixed, almonds & cashews mixed,

and peanuts & cashews mixed. For each combination, we

prepare 20 samples. We train an RF-PCT multi-label classifier

using CLUS [5] with 50% of data and test on the remaining

50% of data. Table II shows the both the true positive rates

and true negative rates. As we show in Figure 14, peanuts

TABLE II
RECOGNIZING MIXED FOODS.

Food True Positive Rate False Positive Rate
Pork 0.88 1
Beef 1 1

Almond 0.85 0.95
Peanut 0.77 0.87
Cashew 0.7 0.89
Average 0.84 0.94

and cashews are very similar and thus difficult to distinguish,

they are confused in a number of testing cases, leading to low

true positive rates and true negative rates for both foods. The



accuracy of the multi-label classifier is generally lower than

single-label classifier because multi-label classification prob-

lem is much more challenging and difficult than single-label

classification. The accuracy of Smart-U would be improved

by enhancing the hardware design. We can add more receivers

on Smart-U, and thus multiple tx-rx pairs can provide more

information on the food ingredients.

VII. RELATED WORKS

In this section, we review related works.

On-body dietary monitoring devices. A number of sensors

are used for dietary monitoring, including acoustic sensors,

electromyography (EMG) sensors, force sensors and motion

sensors. They come in various form-factors. Acoustic sensors

are integrated in earpiece [15], [25] and neckpiece [31],

[35]. It works by monitoring the sounds of chewing and

swallowing. EMG sensors are built into eyeglasses to measure

the muscle activity of temporal muscle during chewing [20],

[36]. The activity of temporal muscle can also be measured

using force sensor [19]. Motion sensor can detect the eat-

ing related motions, including both head motions [25] and

arm/wrist motions [16]. Other sensors such as piezoelectric

and strain sensors are also used in dietary monitoring. A

comprehensive summary of on-body approaches can be found

in [34]. Although on-body methods can provide full day mon-

itoring, they usually have low social acceptance. Furthermore,

these methods are undesirable among some groups of people.

For example, the elderly often feel encumbered by wearable

devices.

Computer-vision based approaches. Cameras have been

used in the domain of dietary tracking. DietCam [23] can not

only recognize food on the plate but also estimate the food

volume. It works by taking photos or a short video of the

meal before and after eating. In this way, it can estimate how

much calories are consumed by the user. eButton [33] also

conducts dietary assessment using life-logging camera. There

are also some image recognition tools available online, e.g.,
Foodai [7] and CloudSight [4], which can be used for food

recognition. Computer vision based approaches are subject to

ambient light conditions and cannot distinguish similar foods,

such as whole milk and skimmed milk.

Smart environment and smart objects. We can instrument

the environments and daily objects to make them smart. Smart

kitchen [18] can track how the food is processed and estimate

calorie in the meal. Smart dining table [37] can monitor the

actions performed during mealtime (e.g., stir, scoop, cut) and

infer how the meal is consumed. There are also some smart

utensils. Spün [12] are coming in the form-factor of forks and

spoons. When combined with a smartphone camera, it enables

calorie and nutrition tracking. HAPIfork [8] vibrates when the

user is eating too fast. Sensing Fork [21] uses persuasive tech-

nology to improve the eating behavior of children by enabling

the interaction between eating and a smartphone game. We

note that Smart-U is different from existing smart utensils, as

it can provide detailed information on food category, without

the help from another device (smartphone).

Near-infrared in food analysis. Near-infrared spectroscopy

has been used in food industry for quality assessment [30]

and food analysis [29]. Traditional methods require bulky

and expensive equipment to do the food analysis, which is

not portable and infeasible for daily dietary tracking. Re-

cently, there are several miniaturized handhold food scanners

available on the market, e.g., Tellspec [13] and SciO [11].

Although their working principle is similar to Smart-U, they

require the user actively scan the food and can only provide

information for the parts that are scanned. Nutrilyzer [32] is

a portable device for characterizing food with photoacoustic

effect, but it works only on liquid food. Smart-U does not

require users to perform specific actions during meal time.

As it can be integrated into any utensil, e.g., a spoon, it can

provide information on every spoon serving.

VIII. DISCUSSION

In this section, we discuss some remaining issues.

Food amount estimation. This paper mainly discuss how

to recognize meal composition. Estimating food amount is not

in the scope of this study. We note that there are two possible

ways that Smart-U can be enhanced to estimate food amount.

First, as Smart-U can detect whether there is food on top of

the utensil, it will detect interleaving positive and negative

results during the meal consumption. In the case of our spoon

prototype, Smart-U can infer the number of spoon servings,

which is directly related to the amount of food consumed. If

Smart-U wants to be more accurate, the second approach it

can take is to integrate some additional sensors. For example,

it can include 3-axis accelerometer or gyroscope to track the

food serving motion [16]. It can also include electrodes to

detect when the user put the spoon in his/her mouth [21].

Complex mixture recognition. In our experiments, we only

consider cases when two types of foods are mixed. We did not

consider the more complicated cases with complex mixtures.

To recognize complex mixtures, we can add more receivers,

such that multiple tx-rx pairs can provide us more information.

Our evaluation results show that the accuracy of recognizing

mixed foods is lower than that of the non-mixed cases. The

situation can be improved by better hardware design. The

current LED technology enables integrating multiple LEDs

in a small chipset. It means that the LED array in Smart-U

can be shrunken into a small chip. In this way, we can deploy

multiple such chips in Smart-U and each chip can treat the

food on top as single food. By combining the outputs from all

chips, we can get to know what foods are in the mixture.

Food recognition speed. The total amount of time takes to

recognize food includes the time to obtain food light spectra

and to perform food classification. Smart-U takes 1.5 seconds

to obtain food light spectra. For food recognition, as the

algorithm is not implemented on a microcontroller, we do

not have the concrete number. But we believe it could be

rather short, as testing a sample using a well-trained model



is supposed to be fast. As it usually takes about 2−3 seconds

to bring food to mouth, Smart-U has sufficient time to perform

food recognition.

Safety and life time of Smart-U. As for utensils, we may

be concerned about whether Smart-U is safe. We require the

surface of the utensils to be transparent such that light can pass

through the surface. Some materials such as Polypropylene,

what we used in the glass prototype in Section VI-F, is

transparent and is often used for food packaging, even for

microwave-proof packaging. Smart-U can be manufactured

using these safe materials.

Another concern about Smart-U is that it should be wa-

terproof. The circuit board and the control unit can be sealed

inside the utensil. If Smart-U further adopts wireless charging,

it does not need to have any open charging port. As some smart

utensils can be washed under water, e.g., Liftware Steady [9],

HAPIfork [8], Smart-U can adopt the similar techniques to

make it waterproof and durable.

IX. CONCLUSION

In this paper, we have presented the design, implementation,

and evaluation of Smart-U, a new method for recognizing meal

composition. Smart-U uses an LED array, photodiodes and

a control unit to capture the reflected light spectra of foods

on the utensil. The unique light spectra enable Smart-U to

recognize meal composition. We have implemented a spoon

prototype and a glass prototype. We have demonstrated that

Smart-U can identify 20 types of foods with 93% accuracy. We

conduct tests under different lighting conditions, temperatures

and with user movement. Results show that Smart-U can work

robustly under different conditions. It can also recognize 6
types of drinks with high accuracy. We also take the primarily

attempt to predict nutrients in milk and identify mixed foods.

We believe that Smart-U moves a significant step toward

automatic dietary monitoring that can provide personalized

food suggestions based on nutrient recommendations and prior

consumption. In the long run, Smart-U can contribute to the

study of chronic diseases.
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objective decision trees,” Machine Learning: ECML 2007, pp. 624–631,
2007.

[23] F. Kong and J. Tan, “Dietcam: Automatic dietary assessment with mobile
camera phones,” Pervasive and Mobile Computing, vol. 8, no. 1, pp.
147–163, 2012.

[24] R. LiKamWa, Y. Liu, N. D. Lane, and L. Zhong, “Moodscope: Building
a mood sensor from smartphone usage patterns,” in MobiSys, Taipei,
Taiwan, 2013, pp. 389–402.

[25] M. Mirtchouk, C. Merck, and S. Kleinberg, “Automated estimation of
food type and amount consumed from body-worn audio and motion
sensors,” in UbiComp, Heidelberg, Germany, 2016, pp. 451–462.

[26] N.-Y. Nair-Benrekia, P. Kuntz, and F. Meyer, “Learning from multi-label
data with interactivity constraints: an extensive experimental study,”
Expert Systems with Applications, vol. 42, no. 13, pp. 5723–5736, 2015.

[27] R. Nandakumar, S. Gollakota, and N. Watson, “Contactless sleep apnea
detection on smartphones,” in MobiSys, Florence, Italy, May 2015, pp.
45–57.

[28] B. G. Osborne, Near-Infrared Spectroscopy in Food Analysis.
John Wiley & Sons, Ltd, 2006. [Online]. Available:
http://dx.doi.org/10.1002/9780470027318.a1018

[29] Y. Ozaki, W. F. McClure, and A. A. Christy, Near-infrared spectroscopy
in food science and technology. John Wiley & Sons, 2006.

[30] N. Prieto, R. Roehe, P. Lavin, G. Batten, and S. Andres, “Application of
near infrared reflectance spectroscopy to predict meat and meat products
quality: A review,” Meat Science, vol. 83, no. 2, pp. 175–186, 2009.

[31] T. Rahman, A. T. Adams, M. Zhang, E. Cherry, B. Zhou, H. Peng,
and T. Choudhury, “Bodybeat: A mobile system for sensing non-speech
body sounds,” in MobiSys, Bretton Woods, NH, 2014, pp. 2–13.

[32] T. Rahman, A. T. Adams, P. Schein, A. Jain, D. Erickson, and T. Choud-
hury, “Nutrilyzer: A mobile system for characterizing liquid food with
photoacoustic effect.” in SenSys, 2016, pp. 123–136.

[33] M. Sun, L. E. Burke, Z.-H. Mao, Y. Chen, H.-C. Chen, Y. Bai, Y. Li,
C. Li, and W. Jia, “ebutton: a wearable computer for health monitoring
and personal assistance,” in Design Automation Conference (DAC), 2014
51st ACM/EDAC/IEEE. IEEE, 2014, pp. 1–6.

[34] T. Vu, F. Lin, N. Alshurafa, and W. Xu, “Wearable food intake
monitoring technologies: A comprehensive review,” Computers, vol. 6,
no. 1, p. 4, 2017.

[35] K. Yatani and K. N. Truong, “Bodyscope: a wearable acoustic sensor for
activity recognition,” in UbiComp, Pittsburgh, PA, 2012, pp. 341–350.

[36] R. Zhang and O. Amft, “Bite glasses: measuring chewing using emg
and bone vibration in smart eyeglasses,” in ISWC. ACM, 2016, pp.
50–52.

[37] B. Zhou, J. Cheng, M. Sundholm, A. Reiss, W. Huang, O. Amft, and
P. Lukowicz, “Smart table surface: A novel approach to pervasive dining

monitoring,” in PerCom. IEEE, 2015, pp. 155–162.


