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ABSTRACT
In-air gesture control extends a touch screen and enables contact-
less interaction, thus has become a popular research direction in the
past few years. Prior work has implemented this functionality based
on cameras, acoustic signals, and Wi-Fi via existing hardware on
commercial devices. However, these methods have low user accep-
tance. Solutions based on cameras and acoustic signals raise privacy
concerns, while WiFi-based solutions are vulnerable to background
noise. As a result, these methods are not commercialized and recent
flagship smartphones have implemented in-air gesture recognition
by adding extra hardware on-board, such as mmWave radar and
depth camera. The question is, can we support in-air gesture control
on legacy devices without any hardware modifications?

To answer this question, in this work, we propose SMART, an in-
air gesture recognition system leveraging the screen and ambient
light sensor (ALS), which are ordinary modalities on mobile devices.
For the transmitter side, we design a screen display mechanism to
embed spatial information and preserve the viewing experience;
for the receiver side, we develop a framework to recognize gestures
from low-quality ALS readings. We implement and evaluate SMART
on both a tablet and several smartphones. Results show that SMART
can recognize 9 types of frequently used in-air gestures with an
average accuracy of 96.1%.

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI); Gestural input.

KEYWORDS
Gesture recognition; visible light sensing; device-free;non-intrusive
visible communication
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1 INTRODUCTION
Gesture control is a natural and user-friendly way to interact with
devices. It extends the traditional keyboard/touch screen and pro-
vides users with great freedom. In home scenarios, smart TV can
be directly controlled with gestures, instead of using a remote con-
troller; when driving, the driver can adjust the volume of music
using simple gestures, which is less distracting than using touch
screens or buttons. Besides, gesture control prevents our hands
from physically touching any devices which may carry harmful
viruses. This is of vital importance for devices in public areas, such
as self-service machines at the airport and vending machines at
shopping malls. According to [27], the gesture recognition market
is expected to grow at a compound annual rate of 27.0%, from 9.8
billion USD in 2020 to 32.3 billion in 2025.

Although prior works have implemented gesture recognition via
hardware on commercial devices like cameras [8], microphones [38,
41, 42], andWi-Fi radios [14, 31], none of them have as yet been com-
mercialized on mobile devices. Solutions based on cameras and mi-
crophones raise privacy concerns, resulting in low user acceptance.
Wi-Fi signals have low spatial resolution and thus Wi-Fi-based so-
lutions are sensitive to background noise, such as people/object
movement in users’ surroundings. Furthermore, solutions based on
Wi-Fi mainly rely on specialized NIC models (e.g., Intel 5300) and
thus lack generality. Recently, several flagship smartphones have
been released on the market and they are equipped with special-
ized hardware to support in-air gesture recognition. For example,
Google Pixel 4 [6] relies on Soli [3], a 60GHz mmWave radar, to
sense human gestures in the air; Huawei Mate 30 Pro [7] supports
a similar functionality, but it relies on an extra depth camera on the
front panel; similarly, LG Q8 ThinQ [9] has a ToF camera on-board
to support in-air gesture recognition. This invites the question
of whether we can support gesture recognition on legacy devices
without any hardware modification?

We observe that we can leverage the “Screen-Hand-ALS (Ambi-
ent Light Sensor)” light path to recognize hand gestures, as shown
in Figure 1. When a user is performing hand gestures over the
screen, the light signal transmitted from the screen is reflected
by hand to the ALS on the mobile phone. The amplitude of the
reflected light signal received by ALS is relative to the position
of the user’s hand. Thus, it is possible to infer the hand gesture
through analyzing the time-series of ALS readings. Screen and ALS
are both ordinary modalities on mobile devices. The ALS is widely
deployed on mobile devices (e.g., mobile phones, tablets, and smart-
watches [20, 37, 39, 45]), which can sense the ambient light intensity
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Figure 1: “Screen-Hand-ALS” light path. Light from screen
is reflected by the hovering hand, and the ALS can sense the
intensity of the reflected light.We analyze the received light
signal and recognize different gesture.

and then adjust the brightness of the screen accordingly. Thus, the
solution is compatible with commercial-off-the-shelf mobile de-
vices. Different from cameras, ALS can only gain the intensity of
ambient light, which contains little sensitive information.

Although the idea sounds straightforward, we are faced with
three challenges. The first challenge is to embed spatial information
into the “Screen-Hand-ALS” light path so that we can recognize the
gesture direction. Since most mobile devices have only one ALS,
which is a one-pixel sensor, the receiver has a low spatial resolution.
To overcome the limitations of the receiver, the light emitted from
the screen must provide as much spatial information as possible. To
address this challenge, we model the “Screen-Hand-ALS” channel
using lambert’s cosine law [15]. We study the influence of the
flickering block’s position on the light intensity received by a light
sensor. Based on the model, we arrange the position of blocks on
the screen.

The second challenge is to hide the spatial light signals in the
screen content to preserve the viewing experience. To hide the
spatial light in the original screen content, we change the original
frame into a pair of switching, complementary frames. To overcome
the limitations of screen refresh rate, we use the screen’s line-by-
line refreshing scheme to generate high-frequency signals, which
are invisible to human eyes. Besides, we select the RGB value of
each frame’s pixel according to the flicker fusion rule [47] to ensure
the visual effect after frame fusing is nearly the same as the original
frame.

The third challenge is to recognize gestures from low-quality
ALS data. Since the power of the light signal is restricted by screen
brightness, and the diffuse reflection on the user’s hand can cause
large signal loss, the signal received by ALS is weak. Furthermore,
the sampling rate of ALS is even lower than the flickering fre-
quency of the line-by-line refreshing scheme, which causes the
under-sampling problem. It is challenging to extract effective fea-
tures from the low-SNR ALS readings. Based on our analysis, we
address this challenge through a signal segmentation and feature

selection mechanism. To extract features relative to the gesture,
we focus on the signal part with high SNR and carefully choose
effective features for classification.

In this paper, we propose SMART, which leverages the screen on
mobile devices for air gesture recognition. We design the screen
update mechanism (the transmitter side) and the gesture recog-
nition framework (the receiver side). We implement and evaluate
SMART on commercial mobile devices, including a tablet and several
smartphones. We evaluate the gesture recognition accuracy, human
perception, and processing latency. We also compare SMART with
a depth camera based approach. The key findings are as follows:

• Recognition Accuracy: We test SMART under 5 different
lighting conditions with 8 users. SMART can recognize 9
types of frequently used in-air gestures with an average
recognition accuracy of 96.1%.

• Subjective Viewing Experience: We invite 15 volunteers to
evaluate the flickering effect and visual fatigue. We conclude
that the design of SMART transmitter greatly relieves the
flickering effect and visual fatigue. The viewing experience
is quite close to the original display.

• Processing Latency: We run SMART on different mobile de-
vices and find that the time to process each frame is shorter
than the frame-to-frame interval for a 60 FPS (frame per
second) display, which verifies that SMART can run in real
time on these commodity mobile devices.

• Comparison with depth camera: We compare SMART with
the gesture recognition functionality of Huawei Mate 30 Pro.
Results show that SMART has comparable gesture recogni-
tion performance with depth camera but lower power con-
sumption.

We highlight our main contributions as follows:

• We propose a new design paradigm based on screen and ALS
for gesture recognition on mobile devices. Using a screen
as the transmitter, we design a frame switching mechanism
to embed spatial information into the original screen con-
tent. We also develop a gesture recognition framework based
on specific features extracted from the light intensity data
collected by ALS.

• We model the “Screen-Hand-ALS” channel to explore the
theoretical relationship between the received light power
and hand gesture. The model guides us to determine the
position of the flickering blocks on the screen.

• We implement and evaluate SMART. Evaluation results demon-
strate that SMART can recognize nine types of frequently
used in-air gestures with an average accuracy of 96.1%. We
expect that SMART provides the legacy device with the same
in-air gesture control capability as the expensive flagship
smartphones.

2 MODELING “SCREEN-HAND-ALS”
CHANNEL

In this section, we model the “screen-hand-ALS” channel, where
light emitted by the screen is reflected by the hand and then the
reflected light goes to the ALS. This is the fundamental working
principle under SMART.
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Figure 2: “Screen-Hand-ALS” light path modeling. (a) The
geometric illustration of the “Screen-Hand-ALS” model. ‘A’
denotes a point light source (a pixel); ‘B’ denotes a reflection
point on hand; ‘O’ denotes the ALS and ‘C’ is the projection
of ‘B’ on the screen plane. (b) Themathematical relationship
between the intensity of the reflected light (𝐼𝑂 ) and hand po-
sition (𝑥 and ℎ).

To achieve gesture recognition based on the “Screen-Hand-ALS”
light path, we want to know the relationship between the received
light power and hand gesture. SMART uses a model to estimate
the intensity of reflected light when a hand is placed at a specific
position over the screen. As the screen is a combination of discrete
light sources (i.e., a large number of pixels) and the shape of hand is
complicated, the mathematical model of the light propagation and
reflection procedure in the system is intractable. Thus, we build a
simplified model to illustrate the basic mechanisms.

In this model, we use the coordinate system shown in Figure 2(a)
to illustrate the power loss. Here we assume that the transmitter
is a point light source. Although the screen is apparently not a
point light source, we can take it as a combination of many discrete
points (pixels). The original point 𝑂 and 𝐴 are two points on the
screen plane and represent the ALS and the point light source (i.e.,
a pixel), respectively; 𝐵 is a reflection point on the user’s hand, and
𝐶 is the projection of 𝐵 on the screen plane.

We first describe the light traveling process: the light from 𝐴

propagates to 𝐵 is then reflected by 𝐵 and received by 𝑂 . The
traveling path can be decomposed into 4 parts: the screen-to-hand
path (𝐴 → 𝐵) in free space, reflection by hand (point 𝐵), hand-to-
sensor (𝐵 → 𝑂) path in free space, and reception at the receiver
(point 𝑂). Next, we calculate the propagation loss for each part
based on the Lambertian radiation pattern [15].

We denote ∠𝐴𝐵𝐶 by 𝜃1 and ∠𝑂𝐵𝐶 by 𝜃2. For light power loss
in the free-space, the illuminating path follows the inverse-square
law for visible light propagation. The loss from A to B, denoted by
𝑙𝐴𝐵 , is inversely proportional to |𝐴𝐵 |2 (i.e., 𝑙𝐴𝐵 ∝ 1

|𝐴𝐵 |2 ) and the
loss from B to O follows 𝑙𝐵𝑂 ∝ 1

|𝐵𝑂 |2 . When an area element is
radiating as a result of being illuminated by an external source, the
irradiance landing on that area element will be proportional to the
cosine of the angle between the illuminating source and the normal.
A Lambertian scatter will then scatter this light according to the
same cosine law as a Lambertian emitter. Thus, the loss at point B
(i.e., 𝑙𝑟 ) caused by reflection follows 𝑙𝑟 ∝ (cos𝜃1 ∗ cos𝜃2), with the
Loss at receiver O follows 𝑙𝑂 ∝ cos𝜃2.

We denote
−→
𝐵𝐶= (0,−ℎ),

−→
𝐵𝐴= (𝑎−𝑥,−ℎ),

−→
𝐵𝑂= (−𝑥,−ℎ),𝑑1 = |

−→
𝐵𝐴

|, 𝑑2 = |
−→
𝐵𝑂 |. According to the calculation above, the light intensity

of signal from A to O is

𝐼𝑂 = 𝐼𝐴 · 𝑙𝐴𝐵 · 𝑙𝑟 · 𝑙𝐵𝑂 · 𝑙𝑂

= 𝐼𝐴 · 𝑐 · cos𝜃1
𝑑21

·
cos𝜃22
𝑑22

= 𝐼𝐴 · 𝑐 · ℎ3

((𝑥 − 𝑎)2 + ℎ2)
3
2 (𝑥2 + ℎ2)2

, (1)

where 𝑐 is a constant. Although 𝑐 may depend on the user’s skin
color, its effect can be eliminated by some normalization techniques.

Now we know the light signal’s amplitude at point 𝑂 is related
to 𝑥 and ℎ, that is, the hand’s position. Particularly, we analyze
the relationship between the amplitude and 𝑥 , ℎ. When ℎ > 0.5𝑎1,
for the same value of ℎ, when 𝑥 is becoming larger, 𝐼𝑂 is first
monotonically increasing and then monotonically decreasing. 𝐼𝑂
has the maximum value when 𝑥 = 𝑥02, 𝑥0 ∈ (0, 𝑎). For the same
value of 𝑥 , 𝐼𝑂 increases first and then decreases with the increasing
ℎ. When ℎ = ℎ03, the value of 𝐼𝑂 is maximum. How 𝐼𝑂 changes
with 𝑥 and ℎ is shown in Figure 2(b).

According to our analysis above, the hand’s position affects the
path loss during the propagation of light signal from screen to
ALS. Therefore, we can exploit the “Screen-Hand-ALS” light path
to design SMART.

3 OVERVIEW
In this section, we provide the system overview of SMART. As we
illustrated above, SMART leverages the “Screen-Hand-ALS” light
path to implement in-air gesture control on legacy mobile devices.
As shown in Figure 3, the design of SMART mainly contains the
transmitter side and the receiver side.

For the transmitter side (the screen display), SMART embeds spa-
tial information into the light signal while preserving the viewing
experience. SMART designs a mechanism to decouple the original
frame into a pair of switching, complementary frames. As human
eyes have persistence-of-vision effect, it looks the same as the
original frame. Different blinking blocks are arranged at different
positions on the screen to convey spatial information. In order to
overcome the restrictions of the screen refresh rate, SMART ex-
ploits the line-by-line screen refresh mechanism [40] to provide
high-frequency signals, which are above the frequency that human
eyes can perceive.

For the receiver side (the ALS), SMART proposes a framework to
recognize gestures from low-quality ALS data. The signal quality of
the received light is poor, as the light from the screen is attenuated
during propagation and reflection, while the noise level is high.
We carefully analyze the sensor data and identify distinguishing
features for the gesture recognition task. After feature extraction,
SMART builds a lightweight classifier for gesture recognition.

1The condition is always true in our system since the largest 𝑎 value in SMART
represents the width of our mobile devices. ℎ is the height of the hand above screen,
which is about 10cm, while the width of screen is usually less than 20 cm.
2The analytical solution of 𝑥0 is unsolvable.
3ℎ0 = ( ( 𝑥464 + 3

4𝑥
2 (𝑥 − 𝑎)2)

1
2 − 𝑥2

8 )
1
2
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Figure 3: Overview of SMART .

4 SMART TRANSMITTER
In this section, we present the design of SMART transmitter. The
main challenge is how to embed spatial information into the screen
so that such changes remain invisible to human eyes while remain-
ing obvious to an ALS. It is challenging for two reasons. First, the
screen has a limited refresh rate and thus it can only generate low-
frequency light signals perceivable by humans. Second, the ALS is a
one-pixel hardware. It can only sample the combined light intensity
from all light sources around with no spatial resolution. To address
these challenges, we first analyze the main differences between
light sensors and human eyes.

4.1 Comparison between light sensors and
human eyes

To guide the design of SMART, we consider the differences between
light sensors and the naked eye by focusing on two aspects: 1) what
kind of information can be sensed by light sensors? 2) how can it
be ignored by human eyes?

The human eye’s structure is sophisticated and can perceive
abundant information of the images displayed on screens. However,
light sensors can simply convert light signal into electrical signals,
which means that they can only sense light intensity. The following
are the two main differences between them. First, a human eye can
be seen as a linear low-pass filter and averages the high-frequency
blinking light [35]. In other words, when a light source is flickering
at a frequency above a certain threshold, the human eye will not
perceive the flickering. However, light sensors can sample at a
frequency higher than eyes can perceive. Second, human eyes can
discriminate colors with different chromaticities, even if they have
the same brightness. However, ALSs on mobile devices can usually
only sense the brightness of light. We try to enlarge the signal that
can be sensed by light sensors, and diminish the flickering effect
that can be perceived by human eyes.

Based on the analysis, we design complementary frames to max-
imize the light signal received by the ALS while ensuring the signal
is unobtrusive to human eyes. The design of SMART transmitter
has the following three main components:

(1) To avoid the flickering effect, we take advantage of the line-
by-line screen display refresh principle, so that switching
complementary blocks provides high-frequency light signals,

......

......

Frame A

......

......

Frame B Frame A Frame B

Figure 4: Complementary frames.

which is above the frequency that human eyes can perceive
(Section 4.2);

(2) To keep the perceived colors of complementary frames look
the same as the original image, we use the color mixture prin-
ciple to hide the blocks in the screen content (Section 4.3);

(3) We smooth the edges of complementary blocks to relieve
the phantom array effect (Section 4.4).

4.2 Complementary block structure design
Specifically, as a low pass filter, human eyes are sensitive to low-
frequency light signals (the frequency below 50Hz [46]). When the
refreshing rate of the screen is 𝑓𝑠 , switching between two com-
plementary frames can provide a light source with a maximum
frequency of 𝑓𝑠

2 . Assume that the refresh rate of the screen is 60Hz,
the maximum light frequency can be 30Hz. The screen can also
generate the light signal with frequency 20Hz, 15Hz, 10Hz, which
are all lower than the threshold. In order to overcome this fre-
quency constraint, we take advantage of the line-by-line refreshing
principle.

Similar to the rolling shutter effect of a camera, screens on the
mobile devices are updated line by line [40]. The pixels in a frame
are updated from top to bottom. We design a pair of 𝑛-line com-
plementary frames (frame A and frame B) as shown in Figure 4,
and switch them continuously. The luminance of the whole screen
alternates every 1

𝑛 ·𝑓𝑠 , which is shorter than the original refreshing
cycle 1

𝑓𝑠
.

We find that only when 𝑛 is odd, by switching between two com-
plementary frames, we can get a reliable high-frequency flickering
light. The explanation is shown in Figure 5. If 𝑛 is an odd number,
the number of bright blocks constantly increases and decreases
alternatively in a consistent pattern, generating a light signal with
frequency 𝑛 ·𝑓𝑠

2 . However, when 𝑛 is even, the change from frame 𝐴
to frame 𝐵 is not symmetric with the change from frame 𝐵 to frame
𝐴. Thus, the signal with frequency 𝑛 ·𝑓𝑠

2 does not exist. Therefore,
an odd 𝑛 should be chosen for SMART.

In addition to the light signal frequency, the value of𝑛 also affects
the power of the flickering light. With a smaller 𝑛, the flickering
area is larger, which brings a higher light intensity, as the light
intensity is proportional to the flickering area. Thus, the power of
the light signal is larger with a smaller 𝑛. We prefer a large signal
energy to get a higher SNR. Thus, we choose 𝑛 = 3.
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Figure 5: Illustration of the high-frequency light signal generation based on line-by-line refreshing scheme of the screen in
detail. Here 𝑁 denotes the number of bright blocks in the current frame.

Frame A Frame B
ALS

(a) Block’s positions (b) Edge smoothing

Figure 6: The specific complementary frames on the screen.
(a)Positions of blocks and ALS on the mobile device. (b)The
edge smoothing scheme to attenuate phantom array effect.

Flickering blocks are arranged on one side of the screen, as
shown in Figure 6(a). We design the complementary frames in this
way, as we expect that the following three frequency components
in the received light signal can be used in gesture recognition:

(1) 𝑓0 = 0 Hz: ambient light has a low frequency and the main
power falls around 0 Hz [26]. When a hand approaches a
light sensor, the DC current from the light sensor decreases
under bright conditions or increases under dark conditions.
This is because if the user is in a bright room, low-frequency
light is mainly from the ambient light, which will be blocked
by the palm. However, if the room is dark, low-frequency
light signals come mainly from the screen backlight reflected
by the user’s palm.

(2) 𝑓1 =
𝑓𝑠
2 Hz: the two complementary frames alternate at 𝑓𝑠

results in 𝑓1. According to the model we build in Section 2,
the power of 𝑓1 becomes larger if the hand is moving closer
to the whole flickering zone.

(3) 𝑓2 =
𝑛 ·𝑓𝑠
2 Hz: this frequency component is caused by the line-

by-line refreshing mechanism. If the hand is approaching
the middle part (vertically) of the complementary block area,
more light generated by the complementary blocks will be
reflected. Thus, the power of 𝑓2 will also change with the
hand position.

4.3 Hiding complementary blocks into screen
content

In this subsection, we present how we hide the complementary
blocks so that users will not perceive the differences from the origi-
nal display. According to the analysis in Section 7.4, our goal is to
maintain chromaticities while maximizing the luminance difference
between complementary frames.

RGB color space is widely used on mobile devices, however, it is
not designed according to human color vision. Considering human
eye perception, we need to convert RGB images into another space
that suits the human vision system[47] . Several color spaces are
created to quantify human color vision. The CIE 1931 XYZ color
space is one of the first defined quantitative links between distribu-
tions of wavelengths in the electromagnetic visible spectrum, and
physiologically perceived colors in human color vision, which has
a linear relationship with RGB color space. Specifically, the color
of each pixel is converted from (𝑅,𝐺, 𝐵) into (𝑋,𝑌, 𝑍 ), in which 𝑌
parameter determines the luminance of a color. The chromaticity
can be specified by the two derived parameters 𝑥 = 𝑋

𝑋+𝑌+𝑍 and
𝑦 = 𝑌

𝑋+𝑌+𝑍 [5] .
As mentioned before, light sensors can only sense light intensity

while ignoring chromaticity. However, human eyes are sensitive
to chromaticity change. In order to minimize the eye’s perception
of the image distortion caused by mixing two frames, we keep the
chromaticity (𝑥,𝑦) of the complementary blocks the same as the
original pixel (𝑥0, 𝑦0); on the other hand, we maximize the lumi-
nance change of complementary pixels so that the light sensor
can receive a stronger flickering light. We model the problem as
an optimization problem. Here we denote colors of complemen-
tary pixels as (𝑥1, 𝑦1, 𝑌1) and (𝑥2, 𝑦2, 𝑌2) and the original color is
(𝑥0, 𝑦0, 𝑌0). Δ𝑌 is the luminance difference between a pair of pixels.
The optimization problem is shown as follows:

max Δ𝑌 = |𝑌1 − 𝑌2 |

𝑠 .𝑡 .


𝑥1 = 𝑥2 = 𝑥0,

𝑦1 = 𝑦2 = 𝑦0,

𝑌0 =
𝑌1+𝑌2

2
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We formulate the problem as a linear optimization problem. Given
𝑥0 and 𝑦0, we can find the best combination of 𝑌1 and 𝑌2. In order
to reduce the processing latency, for a given pair of 𝑥0 and 𝑦0, we
can compute the optimal value of 𝑌1 and 𝑌2 offline and store the
results in a lookup table. When running, SMART can directly search
for the optimal value from the lookup table, instead of solving the
optimization problem for each pixel. As a frame usually contains a
number of pixels with the same color and illuminance, the lookup
table can significantly reduce the processing time.

4.4 Edge smoothing
After hiding the well-designed spatial information into the screen
content, we find that the high-frequency flickering at the edge of
the flickering blocks is still visible when the eyes are blinking or
moving. This phenomenon has been mentioned in [35], and it is
called the phantom array effect. It is because human eyes are more
sensitive to the flickering of moving light sources than the static
light source. To mitigate the effect, we smooth the edges of the
flickering blocks by scattering the switching pixels near the edges.
As shown in Figure 6(b), when approaching to the boundary of the
flickering blocks, the density of complementary pixels gradually
decreases. Then the abrupt change between two different blocks
becomes smooth. In this way, SMART relieves the phantom array
effect.

5 RECEIVER
SMART receiver extracts features from ALS readings and recognizes
different gestures. Our goal is to distinguish 9 in-air gestures that
are frequently used in commodity mobile devices. The gestures
are illustrated in Figure 7. Specifically, “Left-Right”, “Right-Left”,
“Top-Bottom”, “Bottom-Top” can be used for page turning. “Fist”
and “Open hand” are commonly used for screenshots and zooming.

The main design challenge is to extract distinguishing features
from the light signal. The strength of the signal from the screen
becomes weak after the propagation and reflection loss. Besides,
the noise is large since the sampling rate of the ambient light sensor
is limited [20, 39]. The receiver needs to extract reliable features
for gesture recognition from the low-quality, down-sampled signal.
To address the challenge, we design strategies to segment the exact
gestures from the time-series of signals and extract distinguishable
features strongly related to gestures.

5.1 Pre-processing and Segmentation
As present in Section 4.2, we are interested in 𝑓1 and 𝑓2, which are
produced by the complementary blocks displayed on screen. Since
the sampling rate of ALS (denoted by 𝑓𝑙 ) on mobile devices is usu-
ally low, e.g., 100Hz, according to the Nyquist–Shannon sampling
theorem, it can only sample up to 𝑓𝑙

2 . In order to recover frequency
above 𝑓𝑙

2 , we use frequency aliasing [44].
When sampling a high frequency signal at sub-Nyquist rate,

the high frequency component will be aliased to low frequency
spectrum as follows:

𝑓𝑎 =

{
(𝑁 + 1) 𝑓𝑙 − 𝑓 , 𝑓𝑙/2 < 𝑓 − 𝑁 · 𝑓𝑙 < 𝑓𝑙
𝑓 − 𝑁 · 𝑓𝑙 , 0 ≤ 𝑓 − 𝑁 · 𝑓𝑙 ≤ 𝑓𝑙/2

(2)

where 𝑓 is the signal frequency and 𝑓𝑎 is the aliasing frequency,
𝑁 = 0, 1, 2, · · · . According to Equation (2), we can get the aliasing
frequency of 𝑓1 and 𝑓2, denoted by 𝑓 𝑎1 and 𝑓 𝑎2 , respectively. We
use FFT to extract signal energy of 𝑓1 and 𝑓2 (𝑓 𝑎1 and 𝑓 𝑎2 actually).
Besides, we also utilize power on 𝑓0 to show the relative hand
position with ALS. The energy of 𝑓0, 𝑓1 and 𝑓2 are denoted by 𝐸0,
𝐸1 and 𝐸2, respectively.

We segment light signal based on the FFT results. A gesture is
detected when the power of 𝑓1 and 𝑓2 is large. This is because only
when a user is making a gesture, the “Screen-Hand-ALS” channel
can be built and the light signal from screen can be reflected to ALS.
Our target is to cut and analyze the segment of light signal with
high power (which also means high SNR). As shown in Figure 8,
for each gesture, we can get two observations: 1) the power of 𝑓1 is
always larger than 𝑓2 during the relatively high light signal period;
2) the time period with high power is nearly the same for both 𝑓1
and 𝑓2. Thus, 𝑓1’s power is a reliable indicator for the signal power.
Next, we detect the gesture and segment the light signal according
to 𝑓1’s power with an empirical threshold.

5.2 Feature Analysis and Selection
As mentioned in Section 4.2, the time-series of 0 Hz, 𝑓1, 𝑓2 energy
are closely related to hand position. The 3 sequences after segmen-
tation are shown in Figure 10. However, these time series cannot
be directly used as features for gesture recognition. According to
our observation, we need to address the following two problems.

First, as we have mentioned before, 𝑓1 = 𝑓𝑠
2 , 𝑓2 =

𝑛 ·𝑓𝑠
2 . Since 𝑓2

is 𝑓1’s harmonic frequency, a part of 𝑓2’s energy is from 𝑓1. Thus,
𝐸1 and 𝐸2 are coupled and 𝐸2 depends on 𝐸1. How to decouple 𝐸1
and 𝐸2 and amplify the difference between 𝐸1 and 𝐸2? We have
an observation that the ratio of 𝐸1 and 𝐸2, 𝑅12 =

𝐸1
𝐸2
, is relevant

to the hand position. When the hand is approaching the middle
of the complementary block area (for example, when the hand is
performing “Top-Bottom” gesture) , 𝑅12 increases; on the contrary,
𝑅12 decreases if the hand is moving reversely. To illustrate the
observation, Figure 9(c) and Figure 9(d) show the pattern of 𝑅12
for the gestures “Top-Bottom” and “Bottom-Top” as two examples.
Thus, we use 𝑅12 as a feature.

Second, different gestures may have similar patterns of 𝐸0, 𝐸1.
For example, for both gestures “Left-Right” and “Right-Left”, each
pair of patterns are similar, but temporal relationship between 𝐸0
and 𝐸1 is different. For gesture “Left-Right”, 𝐸0 decreases first and
then 𝐸1 increases. For gesture “Right-Left”, 𝐸0 decreases after 𝐸1
increasing. Figure 7 shows the phenomenon directly.

The temporal relationship between 𝐸0 and 𝐸1 can reflect the
relative position among the user’s hand, the light sensor, and the
blinking block, which is an important feature for gesture recogni-
tion. In order to capture the inherent temporal relationship, We
take the derivative of 𝐸0 and 𝐸1 with respect to time, to show the
changing trend. As shown in Figure 9(a) and Figure 9(b), 𝐸 ′0 · 𝐸

′
1 can

clearly discriminate between “Left-Right” and “Right-Left” gestures.
To sum up, four feature are used in classification: 𝐸0, 𝐸1, 𝑅12 and

𝐸 ′0 · 𝐸
′
1. The effect of the later two features on SMART is further

evaluated in Section 7.1.
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(a) Left-Right (b) Right-Left (c) Top-Bottom (d) Bottom-Top (e) Fist (f) Open hand (g) Up-Down (h) Down-Up (i) FlipPalm

Figure 7: Nine gestures of SMART .

Gesture 
detection

(a) Left-Right

Gesture
detection

(b) Top-Bottom

Figure 8: 𝑓1 power and 𝑓2 power throughout the duration
of different gestures. Here we use “Left-Right” and “Top-
Bottom” gestures as two examples to compare power of 𝑓1
and 𝑓2.

(a) Left-Right (b) Right-Left (c) Top-Bottom (d) Bottom-Top

Figure 9: The patterns of additional features added accord-
ing to our observation. (a) The pattern of 𝐸 ′0 ·𝐸

′
1 during “Left-

Right” gesture. (b) The pattern of 𝐸 ′0 · 𝐸
′
1 during “Right-Left”

gesture. (c) The pattern of 𝑅12 during “Top-Bottom” gesture.
(d) The pattern of 𝑅12 during “Bottom-Top” gesture.

5.3 Classification
After obtaining four feature series, we build a classification model
for gesture recognition. Our method is similar to [26]. First, we
apply Z-score normalization on features such that every feature
stream has zero mean and unit variance. After that, we train a
k-nearest neighbour (kNN) classifier using DTW distance as the
distance metric in order to eliminate the effect of different ges-
ture speeds. To be specific, the distance from the test point to its
neighbouring points is the sum of DTW distances between each
pair of feature series. In Section 8, we compare the performance
of different models, including recurrent neural networks (RNN),
long short-term memory networks (LSTM), multilayer perceptrons
(MLP), convolutional neural networks (CNN) and gated recurrent
networks (GRN) and kNN.

Table 1: Experiment setting

Item Number Value
User 8 5 males, 3 females

Gesture 9

LeftRight, RightLeft,
TopBottom, BottomTop,
Fist, Openhand,
UpDown, DownUp, Flip

Environment 5 0lux, 150lux, 350lux,
700lux, 2000lux

6 PROTOTYPE
We implement SMART on a commercial off-the-shelf tablet, i.e.,
iPad Pro with an 11-inch screen. As the operating system restrains
the operation access to the screen driver, we use pre-processed
videos to emulate the switching between complementary frames.
The blinking blocks are positioned on the right side of the screen.
The width of the blinking zone is about 5cm, which can fit onto the
screens of the majority of mobile phones[11]. Thus, SMART can
not only be implemented on tablets, but also on smartphones. By
default, the brightness of the screen is 100% and the screen displays
a coffee shop picture.

We use a standalone ambient light sensor (i.e., TEMT6000) as the
receiver since the operating system also restricts the sampling rate
of light sensors on commercial off-the-shelf devices [20]. ALS is
connected to an Arduino DUE micro-controller as the receiver. We
place the ALS just above the screen as shown in Figure 11 to emulate
the relative position between screen and light sensor on commercial
devices. The distance between the light sensor and the blocks’ left
edge is 2.5cm. The default sampling rate of ALS is set to 250Hz,
since the integration time of most ALSs are below 4ms [2, 12, 13].
Users perform gestures at approximately 10cm above the screen.

7 EVALUATION
In this section, we evaluate SMART in terms of gesture recogni-
tion accuracy, user perception, and processing latency. We also
conduct an in-depth comparison between SMART and the gesture
recognition functionality on COTS smartphones.

We test SMART in 5 environments with 8 users (5 males and 3
females) in the age range of 20 to 30. Our experiments are conducted
in five typical environments. Table 1 summarizes the experiment
settings.
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Figure 11: Experiment setup.

7.1 Recognition Accuracy
We evaluate the classification accuracy of SMART with different
design choices and different environment settings. We ask eight
users to perform each gesture 20 times. Besides, to investigate the
robustness of SMART for various environments, one user is asked
to perform each gesture 50 times in each environment. By default,
we use the average of 10-fold cross-validation as the final result.

Different Feature Sets. In order to show the effectiveness of the
features we have selected in Section 5.2, we compare the recognition
accuracy when the system is trained with different sets of features.
Feature set 1 only includes the time series of 𝐸0, 𝐸1 and 𝐸2, which
are the power of DC, 𝑓1, 𝑓2, respectively. Feature set 2 contains
the four features present in Section 5.2. Figure 12 and Figure 13
show the confusion matrices of the recognition framework trained
with the two feature sets, separately. We can see that feature set 2
achieves 96.1% accuracy compared to that of 87.3% for the feature
set 1. Especially, for the four gestures “TopBottom”, “BottomTop”,
“Openhand” and “Fist”, the accuracy is improved from 79.6% to
95.3% with the two carefully designed features, i.e., 𝑅12 and 𝐸 ′0 · 𝐸

′
1.

Different Lighting Environments. We test 5 static environ-
ments that correspond to common lighting conditions:

(1) A completely dark room, where the light intensity is 0 lux.
(2) A conference room with the lighting infrastructure on at

night. The average light intensity is about 150 lux.
(3) A lounge environment in the day time, where the average

light intensity in the room is about 350 lux.
(4) A normal office in the day time with sunlight and lighting

infrastructure. The average light intensity is about 700 lux.
(5) A bright corridor besides a window in the afternoon. The

average light intensity is about 2000 lux.

To examine the influence of light fluctuations on recognition accu-
racy, we also investigate two common dynamic light environments:

(1) Human interference: We ask one subject to perform the
nine gestures and another subject is commanded to walk
around the place. Each type of gesture is tested for 20 times
in 4 light environments (except for the 700lux normal office,
since there is no space around the testbed to allow a subject
to walk around).

(2) Global light intensity variation: We conduct the experiment
in the office with multiple light sources. A user performs
each gesture 20 times, while one lamp, on the same desk as
the testbed, is switched on/off every 3s. The ALS measures
the light intensity changes between 600lux and 750lux.

Figure 14 presents the recognition accuracy under the different
light conditions. We can observe that 1) the recognition accuracies
under the static environments range from 94.3% to 96.9%, which
means that SMART works well under static environments. 2) the
accuracies in the two dynamic light environments are above 93%.
Thus, SMART is able to work at various ambient light intensities,
from a dark (0lux) to a bright (2000lux) indoor environment, and is
robust under dynamic changing light conditions.

User diversity. To investigate the robustness of SMART for un-
seen users, we use both leave-one-out and 10-fold cross validation
to evaluate the accuracy of each user. With leave-one-out, the test
user’s samples are excluded from the training set. The results are
shown in Figure 15.

The leave-one-out and 10-fold cross validation results of each
user are similar, which means that SMART is a generic rather than a
personalized model. This is because although the gesture amplitude
and velocity are diverse for different users, we apply normalization
techniques (Z-score and dynamic time warping introduced in Sec-
tion 5.3) to cancel out the interference of personal habits and focus
on the features that are related to hand gestures.

Unseen Scenarios.We consider the performance of SMART for
unseen environments. We use leave-one-out cross validation. As
shown in Figure 16, we find that we can achieve 96% accuracy with
kNN if tested environment’s samples are included in the training
set, while we achieve 88.7% accuracy for unseen environments.

To improve the performance of unseen scenarios, we further
propose to replace the KNN classifier with a gated recurrent neu-
ral network (GRN) to achieve better performance. This model is
built with two bi-directional gate recurrent layers with dropout for
feature extraction and one fully connected layer for classification.
Our experiments show that it achieves 93.45% average accuracy on
“unseen" environments. Besides, the performance of GRN can be
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Figure 12: The confusion matrix for
feature set 1.

Figure 13: The confusion matrix for
feature set 2.
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Figure 14: Recognition accuracy in different
lighting environments.
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Figure 17: Evaluation with different con-
tents.

improved with model ensemble, which jointly considers the output
of multiple models and determines the final label. Usually, model
ensemble can promote accuracy at the price of more computation
and storage consumption. Our experiments demonstrate that the
ensemble of 2 GRNs and 5 GRNs achieve 94.27% and 95.61% av-
erage accuracy on “unseen" scenarios, respectively. The results of
different models’ accuracies are shown in Figure 16.

Different Screen Contents. (1) Static contents: We test the ges-
ture recognition accuracy of 3 different static contents (vegetables,
coffee shop and football field). The three contents separately cor-
responds to three levels of average Δ𝑌 : (20, 40), (40, 60), (60, 80).
As shown in Figure 17, we can observe that with a larger Δ𝑌 , the
recognition accuracy becomes higher. It is easy to understand since
a larger Δ𝑌 means higher SNR of light signals from the screen,
leading to more distinguishable features. (2) Dynamic contents: We
also test the gesture recognition accuracy of 3 types of dynamic con-
tents including scenery video, sports, and movies. They respectively
represent videos with minor, medium, and drastic frame transition.
For each video type, we choose 3 video clips, each about 30-90s.
During the test for each video clip, we play the video clip on a loop
and the subjects perform each gesture 10 times at randommoments.
As shown in Figure 17, we can see that the gesture recognition
accuracy of SMART is acceptable when the screen is displaying
dynamic content. Although the dynamic content changes the light

intensity, for the majority of time, it changes smoothly and slowly.
Furthermore, the duration of a gesture is usually short (around
1-2s [26]) and screen light will not change significantly within such
a short interval. Thus, hand gestures play a the dominant role in
the received light intensity.

7.2 Subjective Perception
We conduct a user study to evaluate the subjective perception
quality of the screen display. We invited 15 volunteers (5 female and
10 male) in the age range of 18 to 28 to evaluate 6 different images.
The images belong to various types, including natural scenery,
sports, food, and buildings. They can be classified according to the
range of Δ𝑌 : (1)Δ𝑌 of cliff and vegetables belongs to (20, 40); (2)Δ𝑌
of coffee shop and grassland belongs to (40, 60); (3)Δ𝑌 of a football
field and tennis court belongs to (60, 80). Each image is shown to
the participants in 3 versions. The first version is the original static
image without any modification; the second version is dynamically
switching between two complementary frames as we designed in
Section 4 (without smoothing); the third version adds the edge
smoothing scheme (Section 4.4) to the second version. We showed
the three versions of each image one by one to each volunteer and
asked them to rate each version from three aspects: image content
difference, continuous flicker, and visual fatigue. To be specific, we
use scores 1 to 4 to indicate the degree of each aspect. Table 2 shows
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Table 2: Perception scores.

Score Image content difference Flicker Visual fatigue
1 Completely the same Completely no flicker No visual fatigue
2 Almost the same Almost no flicker A little visual fatigue
3 A little different A little flicker Evident visual fatigue
4 Evidently different Evidently flicker Strong visual fatigue

the meaning for each score. We treat 1 and 2 as satisfactory scores,
which means an acceptable viewing experience.

Figure 18 shows the average scores rated by the volunteers for
each version. We arrive at two conclusions. First, from the score
result of version 3, we conclude that the visual effect of SMART
transmitter is acceptable since the average scores for the three as-
pects are all between 1 and 2. Second, comparing version 2 and
version 3, we notice that the visual effect of version 3 is much bet-
ter than version 2 especially in the respect of “flicker” and “visual
fatigue”. Without the smoothing scheme, the screen flickering is
mostly evident, causing obvious or even strong visual fatigue. Af-
ter edge smoothing, the scores improve dramatically. This result
demonstrates that the smoothing scheme apparently relieves the
continuous flickering and visual fatigue.

7.3 Frame Processing Latency
To evaluate SMART ’s ability to support real-time display, we de-
ployed the frame processing algorithm on both the Android and iOS
platform. We run SMART transmitter on 5 Android devices (Xiaomi
MI9 Pro, Samsung A90, Samsung Galaxy S10, ZTE AXON10Pro),
and 2 iOS devices (iPhone 11Pro, iPhone XS) and measure the pro-
cessing time for each frame.

We test 10 1080p images and 2 videos on different devices. Each
image/video is tested on each device 10 times. We perform some
simple optimizations to reduce the computation load, including
both the spatial domain and the time domain:

(1) Spatial domain: if a block in the frame is of single color (same
RGB values), SMART does the processing (Section 4.3) only
once;

(2) Time domain: if pixels in a frame share the same color with
the previous frame, SMART reuses the results from the pre-
vious frame.

The average result of the processing time for each device is
calculated and shown in Figure 19. We can observe that the average
processing time of different devices is 6-9ms after optimizations.
Thus, it is possible for each frame to be processed and rendered in
real time to support 60 FPS dynamic displaying.

7.4 Comparison with depth camera
We compare SMART with depth camera in terms of both accuracy
and power consumption.

Accuracy.We test the gesture recognition of Huawei Mate 30
Pro, which has a gesture sensor (i.e. a depth camera) on the front
panel. As Huawei Mate 30 Pro supports 6 gestures (i.e., “LeftRight”,
“RightLeft”, “TopBottom”, “BottomTop”, “UpDown”, “Fist”), we test
each gesture for 30 times in a static light environment. The average
accuracy is 93.8%. For SMART, the average accuracy for recognizing
9 gestures is 93.0%- 96.9%. Thus, SMART has comparable accuracy
with the commercial system.

Power consumption. To evaluate the power consumption, we
run SMART on Huawei Mate 30 Pro. The power consumption of
SMART comes from two parts:

(1) SMART transmitter: It mainly refers to the power consump-
tion for frame processing (Section 4.3). The power consump-
tion for screen display is not included in the measurement,
as the screen is always on when the smartphone is in use,
whether SMART is running or not.

(2) SMART receiver: It mainly refers to the the power consump-
tion for running the gesture recognition algorithm. Similar
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to screen, ALS is always on when the smartphone is in use,
and thus we do not include the power consumption of ALS
in the measurement.

We tested 5 types of display content: online chatting, web browsing,
online shopping, playing scenery videos and watching movies. We
also set a control group (without running the algorithm, but with
the screen and ALS on). By looking at the difference between the
experimental group and the control group, we can measure the
power consumption of SMART.

For HuaweiMate30 Pro, we use BatteryManager.BATTERY _PRO
PERTY_CAPACITY[10] for reading the battery percentage. In order
for the results to be accurate, we let SMART run for 1.5 hours
for each test. Each case is repeated 3 times. The average battery
drop of each type of scene is shown in Figure 20. To measure the
power consumption of depth-camera, we use the API function
CameraManager.open()[4] to keep the depth-camera on for 1.5
hours and examine the battery drain of the mobile phone. We
repeat the experiment 3 times and the battery drop is 7%.

Comparing the power consumption of SMART and depth-camera,
we have two observations. First, we found that the power consump-
tion of SMART is lower than depth-camera in most cases. It mostly
benefits from the time domain optimization, as a large portion of
pixels in subsequent frames share a lot of similarity. Second, we
found that the power consumption for more drastic frame transi-
tion is higher. The reason is that drastic transition leads to more
different pixels between the adjacent frames, which means more
pixels in the new frames need to be processed.

Jointly considering accuracy and power consumption, SMART
has comparable gesture recognition performance with depth cam-
era but lower power consumption.

8 DISCUSSION

Degradation in the perception scores. In SMART, although we
make great effort to reduce the influence on the user’s viewing
experience, there is still a little degradation in the perception scores.
To further minimize the perception degradation, we propose two
possible solutions. First, SMART can be triggered when detecting
hand proximity. This can be achieved with proximity sensor, which
is widely available on smartphones. When detecting hand prox-
imity, the system triggers SMART to run the screen modulation
algorithm, preventing long-term perception degradation. Second,
users can choose whether to run SMART or not in different applica-
tion scenarios, so that users can balance between visual perception
and convenience. For example, when users are driving, they may
put driving safety in the first place and choose in-air gesture control
instead of using touch screen or buttons. In this scenario, a little
degradation of visual effect is acceptable since driving safety is
more important.

Implementation via frame buffer. SMART can be implemented
via the frame buffer device driver on COTS mobile devices. Frame
buffer is the display memory, containing the image that is displayed
on the screen. Once the image is mapped to the process address
space, through reading and writing the corresponding memory
address, users can control what is displayed on the screen. SMART
can be implemented by processing the data in the frame buffer. For

Model Accuracy Parameters FLOPs
RNN 88.62 135690 13365760
LSTM 97.50 535050 53660160
GRN 97.85 401930 40296960
CNN 89.18 1482 82176
MLP 97.60 323206 322400
KNN 96.00 – –

Table 3: Experiments of neural network models and the
KNN classifier on 10-fold cross validation. “Parameters" and
“FLOPs" indicate the number of parameters and the floating
point operations in the model.

example, on the Android platform, we can use open("/dev/graphics/
fb0") to visit the frame buffer andmap the address space through the
mmap function. Then the frame buffer can be modified by writing
the mapped memory space and the new pixels will be displayed on
the screen [1].

Other possible classification algorithms. In order to compare
KNN against other state-of-the-art models, we have testedwith 5 dif-
ferent neural network models, including recurrent neural networks
(RNN), long short-term memory networks (LSTM), multilayer per-
ceptrons (MLP), convolutional neural networks (CNN) and gated
recurrent networks (GRN). Their 10-fold cross validation accura-
cies and FLOPs have been shown in Table 3. Our conclusion is that
several neural networks achieve higher accuracy than the KNN
classifier, but the gap is not very large. We think that is because
neural networks are good at extracting representative features from
high dimensional data whereas the feature dimension in our task
is low. Thus, neural networks do not show their full potential in
this task.

9 RELATEDWORK
Device-free in-air hand gesture recognition.Most existing in-
air gesture recognition systems use customized hardware. In indus-
try, some companies start tomanufacturemobile devices supporting
gesture recognition such as Huawei [7], LG[9], Google [6], and so
on. However, most of them need customized hardware such as radar
and depth camera. Soli [3] is a gesture recognition system devel-
oped by Google based on a 60GHz wireless signal with mm-level
wavelength. Leap Motion [8] uses infrared cameras to sense hand
gestures.

In academia, different sensing media are used to sense human
hand gestures. Cameras are widely used in the field of gesture
recognition [17, 30, 36]. However, such systems may cause privacy
problems and heavy computation overhead. Since WiFi signals are
ubiquitous in our daily environment, some prior works have also
studied the use of WiFi to sense hand gestures [14, 19, 31, 33, 41, 48].
They can be easily affected by electromagnetic interference and
can not be used in some RF-inappropriate environments, like hos-
pitals, underground mines and gas stations. Besides, most of them
are based on the measurement of CSI to gain accurate gesture
recognition. However, only specific Wi-Fi NIC models provide CSI
information, while the majority of mobile devices do not provide
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such information. WiGest [14] uses RSS information which can
be achieved on commercial devices. However, it needs a special
preamble gesture for gesture detection. Acoustic signal is also com-
monly used to recognize in-air hand gestures [16, 29, 38, 42]. They
also have privacy problems and can be effected by ambient sound
interference. LLAP [38] is a device-free gesture tracking system that
can be deployed on mobile devices. However, it can be interfered
by nearby moving objects and other devices deployed with LLAP.

Visible light based human gesture sensing. Existing studies
have explored various gesture sensing modalities based on visible
light[21, 23–26, 32, 43]. Okuli[43] is proposed to realize fine-grained
finger tracking with an LED and two light sensors. Some human
sensing systems [21, 23, 24] based on visible light can reconstruct
human gestures. Specifically, LiSense[21] can reconstruct human
skeleton postures using several LEDs and photodiodes embedded
in the floor and StarLight [23] can gain a more fine-grained sensing
posture. Aili [24] can reconstruct hand poses with a table lamp with
an LED panel and an array of photodiodes. Some works propose
visible light human gesture recognition methods. LiGest[32] uses a
grid of light sensors deployed on the floor to build an ambient light
based gesture recognition system. [25] develops a gesture recog-
nition system using small, low-cost photodiodes for both energy
harvesting and sensing. SolarGest [26] is designed to recognize
hand gestures near a solar-powered device. However, they can not
be used on mobile devices directly since they all need customized
devices or previous deployment in the environment.

Hidden Screen-Camera Communication. Prior work [18, 22,
28, 34, 35, 46] utilizes the gap of perception ability between hu-
man eyes and cameras to hide unobtrusive information in a given
screen content while realizing the screen-camera communication.
InFrame++ [35] convert barcodes into complementary frames to
enable screen-camera communication. They leverage the flicker
fusion property of HVS to keep the visual effect of switching com-
plementary frames seems like the original content. HiLight[22]
encodes data into translucency change and enables any-scene com-
munication. Since HiLight changes the translucency instead of the
RGB value of each pixel, it realizes real screen-camera communi-
cation. Chromacode[46] excels in its adaptive embedding in uni-
form color space and realizes imperceptible, high rate, and reliable
communication. Our techniques are relevant to screen-camera com-
munication methods, but also different from them. While existing
methods realize hidden screen-camera communication, we try to
realize the unobtrusive communication between screen, hand and
light sensor. Unlike cameras collecting complete vision information,
ambient light sensors can only sample light intensity, which makes
unobtrusive communication non-trival.

10 CONCLUSION
In this paper, we proposed SMART, a screen-based gesture recogni-
tion scheme, which enables in-air gesture control on legacy mobile
devices. SMART exploits the “Screen-Hand-ALS” light path to recog-
nize the in-air gesture. We have implemented and evaluated SMART
on both a tablet and several smartphones. Results show that SMART
can recognize 9 frequently used gestures with 96.1% accuracy, while
it still preserves the viewing experience of the screen. We expect

that SMART provides legacy devices with the same in-air gesture
control capability as flagship smartphones.
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